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   Abstract-Various Nyquist polynomials and their
spectral factorizations to obtain suitable finite impulse
response (FIR) vestigial sideband (VSB) filters are
summarized here. The filters of interest have transfer
functions that are polynomials with complex coefficients
which are symmetric, due to Lawton, and polynomials
whose coefficients are conjugate symmetric or conjugate
antisymmetric, which are also linear phase.  The
resulting polyphase implementations using polynomials
with complex coefficients for the VSB filters result in
computational savings of 25% over linear phase
prototype VSB filters with real coefficients, and 50%
over VSB filters obtained by factorization into minimum
and maximum phase polynomials.  Relationships to
symmetries of the complex scaling functions and wavelets
obtained from the usual two-scale difference equations
are described.

   Index Terms-Spectral factorization, Nyquist half-band
filters, complex wavelets, complex FIR filters, complex
half-band filters, polyphase implementations, symmetric
wavelets, VSB filter designs, linear phase filters,
spectrally efficient communication systems.

I.  INTRODUCTION
To identify the problem that originally motivated this paper,
we first provide a concise description of a proposed
spectrally efficient design for a multiplexer-demultiplexer
pair composed of a corresponding synthesis-analysis tree-
structured filter bank pair, with its genesis in wavelet packet
-based filter bank trees [1], that we have described in detail
in [2].  Figs. 1 and 2 show an example of the architecture of
the filter bank at the transmitter, and Fig. 3 shows the block
diagram of a matching receiver architecture.  We next
provide summary descriptions of these figures, which are
described in detail, including a design example, in [2-4].
Fig. 1 shows the first of four basic 4-input wavelet packet-
based synthesis filter banks whose output signals are the
inputs signals )(0 zX , X z

1
( ) , X z

2
( )  and X z

3
( )  to an

inverse discrete Fourier transform (IDFT) polyphase
synthesis filter bank shown in Fig. 2.  The ensemble of input
signals into the four channels shown at the left of Fig. 1
consists of binary streams of +1’s and –1’s.  The filters in
Fig. 1 consist of lowpass-highpass pairs, which are usually

quadrature mirror filters (QMF’s).  A multiplexer channel is
any path from an input to an upsampler, one level at a time,
to the root of the tree.  The filter pairs at each level are
designed, as described in [3], to be identical at each level,
but to have transition bands decreasing by a factor of one-
half from level to level from the leaves to the root of the tree.
The transition bands are designed as in [3] to result in a
specified minimum stopband attenuation of the composite
magnitude frequency response of the multiplexer channels
that is equal to the minimum stopband attenuation of the
individual filters in the QMF pairs.  The output signals from
the multiplexer channels are orthogonal if the filter pairs are
QMF’s.  For the example of Fig. 1 the stopband attenuation
of the QMF pairs in [2, 4] was designed to be somewhat
more than 40 dB.  Using two lowpass filters with rolloffs of
50% and 25% in the QMF's at the leaves of the tree, and at
the level next to the root of the tree, respectively, resulted in
a 100% rolloff of the multiplexer channel magnitude
frequency responses from the leaves to the root of the tree
[2, 4].  Because input signals can be fed into the leaves of
the tree in Fig. 1 at say, rate r , or into the upsamplers at the
next level toward the root of the tree at rate r2 , or even
directly into the root of the tree, at rate r4 , a bandwidth-on-
demand capability is a very desirable feature of this
multiplexer design.
As shown in Fig. 2 of the example the output signals from
each of four identical tree-structured filter banks, one of
which is shown in Fig. 1, provide four real data streams that
are used as input signals into an IDFT.  The four output
signals from the IDFT are filtered by the polyphase
components [5] of a prototype FIR VSB filter with complex
coefficients, )(zA , which, for this example with M = 8, is

an 8th-band filter with 25% rolloff [4], obtained from a
lowpass filter design )(zH by frequency shifting its response

anti-clockwise by M/1 = 1/8 of the whole way around the
unit circle of the z -plane.  Analytically, for this

example, )()( 4/π−= jzeHzA .  The output signals from the

polyphase filters are each upsampled by 4, delayed as shown

in Fig. 2, and summed to obtain the output signal )(ˆ
1 zX of

the upper filter bank.  An identical set of four filter bank
trees, one of which is shown in Fig. 1, provides four output
signals into another IDFT whose four output signals are fed
into four polyphase filters for which the prototype FIR VSB



filter is )/1( zAjz D− , where the D  is calculated to ensure

causality [6].  The outputs of the polyphase filters are again

delayed and summed to obtain the signal )(ˆ
2 zX of the lower

filter bank indicated in Fig. 2.  The two signals )(ˆ
1 zX  and

)(ˆ
2 zX  are then added to obtain the complex output signal

of the combined filter bank.  In the example there are a total
of 32 input signal streams and orthogonal multiplexer
channels, illustrated by Figs 1 and. 2, providing a
multiplexed stream of complex numbers from these channels
for transmission over the channel.
Fig. 3 shows a single carrier receiver demultiplexer that is
matched to the transmitter multiplexer of Fig. 2.  All the
filters can be easily derived from those in the transmitter.
The problem that originally motivated the main subject of
this paper is the efficient design of the prototype VSB filter
for the DFT polyphase synthesis filter bank [5, Fig. 8.21]
denoted as )(zA  in Fig. 2.  The other prototype VSB filter at

the transmitter, as shown in Fig. 2, and the two matching
prototype VSB filters at the receiver, as shown in Fig. 3, are
then easily derived from )(zA .  In [2] six designs for )(zA

are described.  These six designs all result from shifting the
frequency response of six FIR filters with real coefficients,

)(zH , whose magnitude frequency response is symmetric

about the origin, to a position with centre at normalized
frequency M/1 , where the radian frequency π2  all around
the unit circle is normalized to 1, and M  is the total number
of channels, e.g., M = 8 in Fig. 2.  Fig. 4 shows the
magnitude frequency response of a design for an )(zA  with
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Fig. 1.  The first basic 4-input wavelet packet-based
synthesis filter bank repeated 3 times, with different channel
numbering each time with successive output signals at the
roots as the input signals X z
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DFT polyphase synthesis filter bank shown in Fig. 2.

equiripple stopband attenuation of over 40 dB that was
obtained from frequency shifting the response of a minimum
phase )(zH  with real coefficients that was obtained by

spectral factorization of a polynomial representing a Nyquist
filter.  The frequency shift of the magnitude frequency
response of )(zH , which is symmetric about the origin, by

M/1  = 1/8 to the right, yielded an )(zA  suitable for

application to the examples in Figs. 2 and 3.  For this

example )()( 4/π−= jzeHzA .  Six designs for )(zA ,

obtained in the above manner by frequency shifting six
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Fig. 3.  Block diagram of the receiver architecture, and
relative symbol rates at various points.

different designs for )(zH  with real coefficients, are

discussed in [2], and the number of multiplications required
for several of these are compared.
Three of the designs considered have linear phase.  As noted
in [7], and evident from Figs. 2 and 3, the factorization into
minimum and maximum phase FIR filters requires that both
prototype filters be used at both the transmitter and the
receiver.  Filters with linear phase are the same in both the



Fig. 4: The magnitude frequency response of the 8th-band
equiripple stopband VSB filter used for calculating the
polyphase components for the DFT polyphase filter banks in
the example.

transmitter and the receiver, and are symmetric, resulting in
half the total number of multiplications [2].  On the other
hand, the linear phase filters are about 25% longer than those
obtained from a factorization into minimum and maximum
phase filters.  Therefore, by using linear phase designs the
overall saving in the total number of multiplications is about
25%.
Lawton [9] has presented another factorization of a Nyquist
polynomial, resulting in symmetric filters with complex
coefficients.  Thus, the number of coefficients would be the
same as that obtained by factorization into minimum and
maximum phase polynomials, but only one filter type,
multiplied, as seen from Figs. 2 and 3, by appropriate
constants, would be needed at the transmitter and receiver,
so the number of multiplications would be halved.  Thus, the
computational savings over linear phase designs would be
about 25%.  Unfortunately, the Lawton factorization cannot
provide linear phase [10].  We turn next to factorizations of
Nyquist polynomials into polynomials with complex
coefficients, and properties of scaling functions and wavelets
obtained from the appropriate two-scale difference equations
using these complex coefficients [9, 10].

II. FACTORIZATIONS INTO POLYNOMIALS FOR
FIR FILTERS WITH COMPLEX COEFFICIENTS AND

THE PROPERTIES OF THE CORRESPONDING
SCALING FUNCTIONS AND WAVELETS

A. Previous Work

As noted in [10] research on wavelets has been concerned
largely with real-valued wavelet bases and perfect
reconstruction filter banks (PRFB’s).  Relatively few
publications on complex wavelet bases and filter banks have
appeared in the literature: five are cited in [10].  Lawton [9]
seems to have been the first to study their properties, and
Zhang, et al. [10] have deepened and extended Lawton’s
work significantly.  In this paper we apply Lawton’s

factorization [9] and extensions and ramifications of it by
Zhang, et al. [10] to the design of FIR filters suitable for
design of )(zA , following the original ideas in [7].  We also

discuss the connections to scaling functions and wavelets,
which also have possible applications to communications.

B. Factorizations of Nyquist Filter Polynomials

We summarize the known properties of factorizations of
Nyquist filter polynomials into FIR polynomials with
complex coefficients and the corresponding scaling
functions and wavelet bases [9, 10].
The factorization of the Nyquist filter introduced by Lawton
[9] permitted no real roots of )(zH  except at 1−=z , and

produced pairs of factors whose zeros were roots and their
reciprocals.  The resulting magnitude frequency response is
the same as that of the filter transfer function with zeros at
the roots and their conjugates.  Since the zeros occur in
reciprocal pairs the filter is symmetric but, as shown in [10],
it is not linear phase, as is claimed in [9], even though the
scaling function formed by using the coefficients in the
proper two-scale difference equation is symmetric and the
wavelet is antisymmetric.  Based on the theory in [9] McGee
[7] proposed using a symmetric filter )(zH  to obtain )(zA

as a prototype filter in polyphase implementations such as
are shown in Figs. 2 and 3.  He designed an 87th order
Lawton symmetric polynomial with complex coefficients,

)(zP , which was the transfer function of an 8th band lowpass

filter, with a 43-dB stopband loss and a 25% excess
bandwidth.  It should be noted, however, that this digital
filter does not have linear phase.  He also derived an
architecture for efficiently realizing the filtering at the
transmitter and receiver.  The use of the Lawton
factorization results in a computational saving on the order
of 25% over the use of linear phase prototype filters, and
50% over the use of filters obtained from a
minimum/maximum phase decomposition.  This seems to
have been the first application of the filter transfer functions
with complex coefficients obtained by using the Lawton
factorization to communications or communications signal
processing other than source coding applications in image
and video processing (references cited in [10]).
Lawton’s work resulted in confusion among some readers
that symmetry of the scaling function implied linear phase of
the corresponding symmetric )(zH .  This confusion has

been cleared up, and connections of the properties of digital
filter transfer functions with complex coefficients to the
properties of the corresponding scaling functions and
wavelets have been provided by Zhang, et al. [10].  We
summarize these next.
To begin with, Daubechies has shown that all compactly
supported real orthogonal wavelet bases and their associated
conjugate quadrature filters (CQF’s) are neither symmetric
nor antisymmetric, except for the Haar function.  The first
result proven in [10] is that the scaling filter h  in a CQF
perfect reconstruction filter bank (PRFB) associated with a
dyadic compactly supported complex orthogonal wavelet



basis cannot be antisymmetric.  Hence, it follows that the
associated scaling function cannot be antisymmetric either,
and more generally, that if complex CQF PRFB’s have any
symmetry property, then they can only be symmetric, not
antisymmetric.  It is then shown that for every symmetric
CQF for a PRFB with complex coefficients there is a
corresponding CQF for a PRFB with real coefficients that
has the same magnitude frequency response.  The converse
does not hold since, for example, it is impossible, for some
real Daubechies wavelets, to find corresponding symmetric
complex-valued ones.
The next topic dealt with in [10] is the linear phase property.
It is shown there that an FIR filter h  with complex
coefficients that are conjugate symmetric or antisymmetric
has linear phase.  However, a CQF PFRB filter h  that has
complex coefficients does not have linear phase if it is
symmetric or antisymmetric, contradicting Lawton [9].  A
very important result is that the compactly supported dyadic
orthogonal complex wavelet bases cannot be linear phase.
This is equivalent to the result that a linear-phase CQF with
complex coefficients for a PRFB does not exist.  It is
however, possible to design a CQF with symmetric complex
coefficients and to approximate linear phase by using a still
different factorization of a Nyquist filter polynomial transfer
function, as shown in [10].
We propose the use of an )(zH  designed by this method to

obtain a suitable )(zA  with approximately linear phase that

can be used as the prototype filter in polyphase
implementations such as those in Figs. 2 and 3.  The design
should provide computational savings similar to those
obtained by using the symmetric )(zH  with complex

coefficients obtained by using the Lawton factorization [7].
The design of an )(zH  with symmetric complex coefficients

may begin, for example, by first designing a Nyquist
polynomial, )(zN , with a desired magnitude frequency

response, or by multiplying together two FIR filter transfer
functions, )(zH ′ and )/1( zH ′ , with real coefficients, to

obtain )/1()()( zHzHzN ′′= .  The )(zN  can be factored

then into polynomials with complex coefficients as

)()()( 1−∗= zHzHzN , where the asterisk denotes the

conjugation of the coefficients.  The complex zeros of )(zN

are sets of four, ),,,( 11 −−
jjjj zzzz .  For the Lawton

factorization the zeros of )(zH  can be selected as jz  and

1−
jz (or jz and 1−

jz ).  We refer the reader to [9] and [10] for

a discussion of real roots, which do not often occur in
practice.  The Lawton factorization yields an )(zH that has

complex symmetric coefficients but is not linear phase.  To
obtain an )(zH  that has complex symmetric coefficients but

has approximately linear phase it is assumed that all the
zeros of )(zN  are inside the unit circle, with subscripts as

indexes starting with one, ordered so that the arguments of
the roots are monotonically increasing within (0, π ).  Then
the odd indexed zeros of )(zN  and the reciprocals of the

conjugates of the even indexed zeros of )(zN  are selected as

zeros of )(zH , while the even indexed zeros of N(z) and the

reciprocals of the conjugates of the odd indexed zeros of

)(zN  are selected as zeros of )( 1−∗ zH .  Example designs

of both the Lawton type, called normal symmetric complex
(NSC), and the approximately linear phase symmetric
complex (ALPSC) designs just described, for )(zN

constructed from the real coefficients of Daubechies filters
are given in [10].  Examples of the symmetric scaling
functions and antisymmetric wavelets corresponding to each
of the two types of symmetric complex FIR filter designs are
also given.  Plots of the phase responses of the NSC,
ALPSC, normal real (NR), and approximately linear-phase
real (ALPR) due to Daubechies demonstrate the superior
linearity of an ALPSC design.
The ALPSC design can be used to design a VSB filter

)(zA and the other filters related to it, as shown in the

examples of Figs. 2 and 3, from )()( 4/π−= jzeHzA for

8=M , or for any other M , with )(zH a symmetric FIR

transfer function with complex coefficients.  Following [7],
we next present a summary of the design theory and
description of efficient polyphase realizations for )(zA

derived from filters )(zH  with symmetric complex

coefficients.

III.  EFFICIENT POLYPHASE REALIZATIONS
USING PROTOTYPE VSB FILTERS DERIVED

FROM SYMMETRIC FIR FILTERS WITH
COMPLEX COEFFICIENTS

From the factorization of the prototype Nyquist filter
polynomial )(zN  the non-causal filter )(zH  is obtained,

and then the causal filter is obtained as

P z z H zL( ) ( )( )/= − −1 2 ,                        (1)

where L  is the length of the filter [7].  )(zP  has coefficients

that are complex symmetrical. It may have an arbitrary
number of zeros at 1−=z .  The theory of VSB filter banks
using such polynomials is as follows.  The M  transmit
filters have M real input sequences each at a rate M/2
applied to them.  The filter outputs are summed, and the
resulting signal is then applied to a set of M  receive filters,
the real outputs of which are sampled at the rate of M/2 .
The transmit and receive filters are frequency-shifted

versions of prototype filters )(zP  and )/1( zP∗ ,

respectively, with appropriate phasing [6, 7].  The frequency
shifts are multiples of M/1 .
In a well-designed system the real part of the pulse response
will be nonzero at the sampling instant, and zero at all times
that are displaced from it by multiples of 2/M , the
reciprocal of the sampling rate.  The sampling instant occurs

1−L  sample times after the pulse has been applied at the
input.  Similarly, in the adjacent channels, the real part of the
pulse response should vanish at the main sample time and at
sample times displaced from it by multiples of 2/M .



In the following it is assumed that the length L  is a multiple
of M : this results in all the polyphase filters having the
same length.  This assumption may be removed, but this
does not appear to lead to great system savings unless low
delay is desired.
It is shown in [7] that the transmit filters )(zTk  and receive

filters )(zRk  are represented by

)()( 2/12/)1)(2/1( zWPWezT kLkj
k

k +−+φ=               (2)

)()( 2/12/)1)(2/1( zWPWezR kLkj
k

k +∗−+φ−= ,         (3)

where MjeW /2π−=  and
=φ−φ + kk 1 an odd multiple of 2/π .                   (4)

Recalling that the filter length L  is a multiple of M and
choosing the phase shifts [7] as

2/)1)/(2)(2/1( π++=φ MLkk                          (5)

the transmit and receive filters are represented by

)()( 2/12/)12/)(2/1( zWPWzT kMk
k

+++−=       (6)

)()( 2/12/)12/)(2/1( zWPWzR kMk
k

+∗−+= .             (7)

The claimed efficiencies due to computational savings

follow because when the phase components of )( 2/1 zWP are

introduced, both the transmitter and receiver involve the
multiplication of only one of the sets of prototype filter
coefficients for every input set of data. For the DFT the
simplest approach seems to be to find the polyphase

expansion of )()( 2/14/)12/( zWPWzA M +−=  as

)()(
1

0

M
r

M

r

r zAzzA ∑
−

=

−= .                         (8)

More efficient realizations are obtained using polyphase
decompositions.  There are two cases, one involving the

DFT with elements Mkrje /2π , and the other involving the
odd-time, odd-frequency DFT (OODFT) with elements

Mrkje )2/1)(2/1(2 ++π .
Then the output from the transmitter is

       )()( 2/
1

0

)2/)12/((
1

0

M
k

M

k

kMrM
r

M

r

r zXWzAz ∑∑
−

=

++−
−

=

− .        (9)

If the integer 12/ +M is even then the processing may be
accomplished by taking the DFT of the inputs, choosing the

2/)12/( ++ Mr output of the DFT as the input to the
thr polyphase filter, and selecting the output that is desired.

Otherwise it is necessary to multiply the M inputs by a
phasing factor.  This is the OODFT case.  Using the DFT
leads to the diagram in Fig. 5.  For this case the inputs are
real sequences and the DFT may be done as a DFT of order

2/M on the complex signals 122 ++ ii jXX . The sampling

operation may be moved to just before the delay lines. Also,
the output chain of delays may be expressed as a chain of

length 2/M by incorporating delays 2/Mz −  in the structure.
The receiver uses the polyphase expansion of

)()( 2/12/)12/( zWPWzB M ∗−= , which is given by

)()(
1

0

M
r

M

r

r zBzzB ∑
−

=

−= .                       (10)

Then

)12/(
1

0

)()( −−
−

=

−∑= rMkM
r

M

r

r
k WzBzzR .               (11)

A diagram that looks like Fig. 5 reversed gives an efficient
realization of the receiver [7].  The arrows on the tapped
delay line are at the left and point down instead of up.  These
are followed by the polyphase components in (11), ordered
from top to bottom.  Their output signals are the input
signals into an M - DFT.  The M-DFT is followed by a real
part function.  The output consists of the real parts of the M-
DFT sampled at rate M/2 .  The sampling operation may be
moved back to the output of the delay lines.  When 2/M  is
an even integer, further phasing is required at the output.
For the case when 2/M is odd the outputs are real, the DFT
may be replaced with a DFT of order M/2.

Fig. 5.  Transmitter.  M real input sequences are applied at rate 2/M to an IFFT transformer, resulting in M complex
sequences at rate 2/M. These are then filtered by the M polyphase filters, and the output is obtained by summing the filter
outputs properly.  If M/2 is even, then a further phasing is necessary at the input.
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and appropriate real and imaginary parts of the output
taken, and the input delay chain of length M may be
replaced with one of length M/2 by incorporating delays
of length M/2 within the filtering structure.
The architecture of Fig. 5 may be implemented as shown
in Fig. 2 by using the theory and method described in [5]
leading up to Fig. 8.21 there, which was used to obtain the
architecture in Fig. 2.

IV. CONCLUDING DISCUSSION

We have provided a summary description of a spectrally
efficient, bandwidth-on-demand multiplexer-
demultiplexer pair in which a computationally efficient
DFT polyphase synthesis filter bank was used to
implement part of the multiplexer.  This polyphase filter
bank used a prototype VSB filter )(zA  with complex

coefficients derived from a lowpass thM -band filter
)(zH  by frequency translation to the right by M/1 using

)()( 4/π−= jzeHzA , where M  is twice the number of

inputs into one of the two IDFT’s used in obtaining the
output signal of the multiplexer in Fig. 2.  In earlier works
[2, 4] the )(zH was calculated by factoring a designed

Nyquist polynomial in such a way that )(zH had real

coefficients.  In this paper we describe and discuss two
factorizations that result in FIR filters with coefficients
that are complex and symmetric.  One of these is due to
Lawton [9].  The resulting )(zH  may be reasonably close

to linear phase, but it is not linear phase, even though the
associated scaling function is symmetric and the
associated wavelet is antisymmetric.  Another
factorization, due to Zhang, et al., yields approximately
linear phase symmetric complex (ALPSC) designs for

)(zH .  These designs for )(zH  result in prototype filters

)(zA  for realization of the polyphase synthesis-analysis

pairs in the multiplexer-demultiplexer pairs that are
computationally efficient due to the symmetries in the
coefficients.  The computational efficiencies are the result
of savings in the numbers of multiplications of about 25%
over linear phase designs, and 50% over designs in which
factorizations into minimum and maximum phase
polynomials are used.  We recommend the ALPSC
factorizations yielding filters with symmetric complex
coefficients, especially for the recent realizations giving
multiplexer channels with linear phase for the tree [11].
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