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Abstract | The performance of the multilevel pattern

matching (MPM) code for lossless image compression

is �rst analyzed. It is shown that the worst-case re-

dundancy of the MPM code against all �nite 2D con-

text arithmetic codes is O(1=
p

log n), where n is the

number of pixels in the image to be compressed. This

result is in contrast to the redundancy of O(1= log n)

in the case of 1D data and is caused by the so-called

2D boundary e�ect. To alleviate the 2D boundary

e�ect, we then extend the MPM code to the case of

context modeling, yielding a context-dependentMPM

code. Our experimental results show that the context-

dependent MPM code, with a simple context model,

signi�cantly outperforms the original MPM code on a

wide range of bi-level images. Comparing with JBIG,

the context-dependent MPM code outperforms JBIG

in progressive coding mode, and is comparable with

JBIG in sequential coding mode.

I Introduction

Recently, Kie�er et al.[1] proposed a lossless data com-
pression code called the multilevel pattern matching code
(MPM code). The MPM code is universal in the sense
that it can achieve asymptotically the entropy rate of any
stationary source. The authors of [1] also proved that
the MPM code has an O(1= logn) worst-case redundancy
both relative to any �nite-state arithmetic code and rel-
ative to any �nite-state source. In this study, we shall
�rst analyze the performance of the MPM code for loss-
less image compression. Let us begin with a brief review
of the MPM code.

Let x = x1x2 � � �xn be a sequence with a �nite alphabet
A. At the heart of the MPM code is a multilevel repre-
sentation (T0; T1; � � � ; TI) of the input sequence x, where
the parameter I � log logn is positive integer. At each
level i(0 � i � I), Ti is a sequence of tokens each of which
represents a substring of x of length ri, where r � 2 is a
�xed positive integer. T0 is constructed in the following
way. Fix a set T = ft0; t1; � � �g disjoint from A. First,
partition x into non-overlapping substrings of length rI .
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(For simplicity and without losing the essentials of the
MPM code, we assume the input sequence length n is a
multiple of rI .) De�ne this partition as S0(x). Next, we
replace each distinct substring in S0(x) with a token in T ,
according to its order of appearance in S0(x), i.e., the �rst
distinct substring in S0(x) is replaced with t0, the second
with t1, and so on. The resulting token sequence is T0.
For 1 � i � I, Ti is constructed recursively in the follow-
ing manner. Let T i = ft0; t1; � � � ; tjT ij�1g be the set of
distinct tokens appearing in Ti; 0 � i � I � 1. The token
sequence t0t1 � � � tjT ij�1 represents a sequence of length

rI�ijT ij from A. Partition the sequence from A repre-
sented by t0t1 � � � tjT ij�1 into non-overlapping substrings

of length rI�i�1, and denote this partition as Si+1(x).
We then replace each distinct substring in Si+1(x) with
a token in T , in the same way as that in constructing
T0. The resulting token sequence is Ti. As for the bot-
tom level, TI is simply the same sequence from A repre-
sented by SI(x). The sequence (T0; T1; � � � ; TI) is called
the multilevel representation of x, from which x can be
fully reconstructed. Thus, to compress x, we just need
to compress this multilevel representation. This task is
accomplished by encoding each Ti(0 � i � I) separately
using an adaptive arithmetic code. (TI may be coded dif-
ferently. See [1] for details.) We also need to encode the
input sequence length n.

In [1], the authors also mentioned a version of the MPM
code, called QUAD code, for lossless image compression.
To compress an image X, the QUAD code �rst trans-
forms X into a one-dimensional (1D) sequence through a
scanning method called quadrisection scanning. One then
applies the MPM code to this 1D sequence with r = 4.
Their experiments on compression of bi-level archival im-
ages of size 512� 512 show that, though the QUAD code
is competitive with JBIG, there is a obvious gap between
the compression rates of the QUAD code and those of
JBIG. For the eight tested images in [1], the QUAD code
has an average rate of 0:2132 bits/pixel, and that of JBIG
in progressive coding mode is 0:1786 bits/pixel.

To improve the performance of the MPM code for lossless
image compression, we will extend the MPM code to the
case of context modeling in this study. We �rst analyze
the compression performance of the MPM code in loss-
less image compression in next section. Particularly, we
compare the MPM code with template-based arithmetic
codes (such as JBIG) in lossless image compression. The
analysis will shed some light on why we should use con-



text modeling and how to design a context model in the
MPM code. These two topics, together with performance
analysis of the context-dependent MPM code, will be dis-
cussed in Section III. Experimental results are presented
in the last section.

II 2D MPM Code | Without Context

Models

In this section, we �rst present a version of the MPM code
for lossless image compression, called two-dimensional
(2D) MPM code. This code is di�erent from the QUAD
code. We then analyze its compression performance.

II-A Algorithm description

Throughout this subsection, we �x r � 2 and a nonnega-
tive integer I. Let X be an image with a �nite alphabet
A and of size N �M , where N is the number of rows and
M is the number of columns of X. Let n = NM be the
number of pixels in X. Later in this paper we will inter-
changeably use X;XN�M or Xn to represent this image.
For simplicity we assume that both N and M are multi-
ples of rI. Fix a token set T = ft0; t1; � � �g disjoint from
A. Let $ be a symbol not in A [ T . There are two steps
to compress X using the 2D MPM code: construction
of a multilevel representation of X and encoding of the
multilevel representation.

1) Construction of a multilevel representation of X: First,
we partitionX into non-overlapping blocks of size rI�rI .
Fix a block scanning method. (This scanning method
can be arbitrary; in contrast in the QUAD code only
the quadrisection scanning is used.) Read the blocks
according to the scanning method, and denote the ob-
tained sequence as S0(x) = X1X2 � � �XjS0(X)j, where
Xi(1 � i � jS0(X)j) represents an rI � rI block of pix-
els of X. Replace each distinct block in S0(X) with a
token in T , t0 for the �rst distinct block, t1 for the sec-
ond, and so on. Then, in the resulting token sequence,
replace each distinct token with $ at its �rst appear-
ance, and do not touch its later appearances if any. De-
note the �nal sequence as T0 = (u1; � � � ; ujT0j), where
ui 2 f$; t0; t1; � � � ; thT0i�1g with hT0i being the number
of distinct tokens in T0. The other sequences in the mul-
tilevel representation of X, T1; � � � ; TI , are obtained re-
cursively in the following way. For any sequence z, let
�(ajz) be the number of occurrences of the symbol a in
z. Let T i = ft0; � � � ; t�($jTi)�1g, where 0 � i � I � 1
and tj(0 � j � �($jTi) � 1) represents an rI�i � rI�i

block of pixels. Partition the rI�i � rI�i block repre-
sented by tj 2 T i into r2 smaller blocks, each of which
is of size rI�i�1 � rI�i�1. Arrange these smaller blocks
according to the scanning method. Then concatenate all
these smaller blocks corresponding to t0; t1; :::; t�($jTi)�1
in the indicated order. Let Si+1(X) represent the result-
ing sequence. Now, as we did to S0(X), we replace each
distinct block in Si+1(X) with a token in T , and replace
each distinct token with $ at its �rst appearance. The

resulting sequence is Ti+1. As for the bottom level, TI is
the same sequence from A represented by SI(X).

2) Encoding of the multilevel representation of X: Let
(T0; T1; � � � ; TI) be the multilevel representation of X ob-
tained from the previous step. Let Ti = u1 � � �ujTij; 0 �
i � I�1. From the previous step, we see that u1 = $ and
uk+1 2 f$; t0; t1; � � � ; t�($juk

1
)�1g; 1 � k � jTij � 1. Thus,

the following is a valid probability distribution of uk+1:

p(uk+1juk1) =
8<
:

�($juk
1
)

juk
1
j+�($juk

1
)
; uk+1 = $;

�(tjju
k
1
)+1

juk
1
j+�($juk

1
)
; uk+1 = tj ; j = 0; 1; � � � ; �($juk1)� 1:

Since each of the probabilities in this distribution is pos-
itive, we can use an adaptive arithmetic code to en-
code/decode Ti; 0 � i � I � 1, using this probability
distribution. As for TI , since all symbols in TI are from
A, we can use the following probability distribution to
encode/decode it by an adaptive arithmetic code:

p(uk+1juk1) =
�(uk+1juk1) + 1

jAj+ juk1j
; uk+1 2 A:

Of course, we need to encode the size ofX before encoding
T0; T1; � � � ; TI . This can be done using the simple coding
scheme E1 described in [1]. Note that from the size of
X we can determine jT0j. From �($jTi)(0 � i � I � 1)
we can determine jTi+1j. Thus we need not to send addi-
tional information about jT0j; jT1j; � � � jTI j to the decoder.
(These lengths are needed in the arithmetic code for Ti
as a termination condition.)

II-B Algorithm analysis

In this subsection, we compare the 2D MPM code with
template-based arithmetic codes for lossless image com-
pression. For this purpose, we need the following de�ni-
tions. A template is a geometric pattern of pixels which
de�ne a neighborhood around a pixel to be coded. The
pixels in a template take on values when the template is
aligned to a particular part of an image. The values of
the pixels in the template de�ne a context for the pixel
to be coded. The following �gure shows one of the tem-

plates used in JBIG[2]. ?
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The pixel denoted by
\?" corresponds to the pixel to be coded and is not part
of the template. The pixels denoted by \c" correspond
to pixels in the template, and shall be used to determine
the context for the pixel \?". Let T be a template. For a
pixel x 2 X, we use Tx to denote the set of pixels in its
template, and use T (x) to denote its context de�ned by
Tx. If any of the pixels in Tx lies outside the boundary
of X, we say that x has an incomplete template. Denote
the set of all pixels in X with incomplete templates as
�T (X). Intuitively, �T (X) contains the boundary pixels
of X. For example, for the template T and the image X
shown in Figure 1, �T (X) = f1; 2; 3; 4; 5;9;13g.
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Figure 1: A template and an image

Let s be a �xed positive integer. Let I(s) = f1; 2; � � �; sg.
Let Ts(A) be the family of all templates T which induce
s contexts. (For example in Figure 1, if each of the three
\c" pixels takes on values 0 and 1, then the template T
induces 8 contexts.) Fix the mapping from T (x) into I(s).
Let Ps(A) be the family of all functions p from I(s)�A
into [0; 1] such that

X
a2A

p(aju) = 1 for any u 2 I(s), where

p(aju) denotes the value of the function p at (u; a).

De�nition 1 Let Xn be an image. The s-context unnor-
malized empirical entropy of Xn is the nonnegative real
number Hs(Xn) de�ned by

Hs(Xn) = inf
p2Ps(A)

inf
T2Ts(A)

min
T (x)2I(s); x2�T (Xn)

� log
nY
i=1

p(xijT (xi)): (1)

The quantities Hs(Xn); s = 1; 2; � � �, represent the short-
est codeword lengths assigned to Xn by any template-
based arithmetic code with s contexts. The following
theorem bounds the codeword length assigned to Xn by
the 2D MPM code in terms of Hs(Xn).

Theorem 1 Let s be any positive integer. Let L(Xnjr) be
the codeword length assigned to Xn by the 2D MPM code
when the parameter I is chosen as O(log logn). Then

max
Xn

1

n
[L(Xnjr)�Hs(Xn)] = O(

1p
logn

): (2)

Outline of proof: First, we show that

IX
i=0

jTij = O(
n

logn
); (3)

where fTi; i = 0; 1; � � �; Ig is the multilevel representation
of X furnished by the 2D MPM code. Then we show that

L(Xnjr) �
IX
i=0

H0( ~Ti) +
IX
i=0

3jTij+ 2 logn+ 2jAj; (4)

where ~Ti is the sequence obtained from Ti by striking all
$'s, and H0( ~Ti) is the zeroth-order entropy of ~Ti. (See [1]
for the de�nition of H0(�)). Next, we show that

IX
i=0

H0( ~Ti) � Hs(Xn) +
IX

i=0

j�T (XrI�i�rI�i)j � j ~Tij log s;
(5)

where �T (XrI�i�rI�i) is the set of pixels in an r
I�i�rI�i

block with incomplete templates. For a k�k block Xk�k

and a template with �nite contexts, j�T (Xk�k)j is O(k).
(Intuitively, that is because the number of boundary pix-
els in a k � k block is O(k).) From (3),(4) and (5) we
obtain (2).

Theorem 1 tells us that the worst-case redundancy of the
2D MPM code relative to any template-based arithmetic
code with �nite contexts is O(1=

p
logn), as a function

of the image size n. Recall that in 1D case, the worst-
case redundancy of the MPM code relative to any �nite-
state arithmetic code is O(1= logn). Why do we have a
worse redundancy bound in the 2D case than in the 1D
case? How do we improve it? These two questions will
be answered in next section.

III 2D MPM Code | With Context

Models

To answer the two questions mentioned at the end of the
previous section, we need to understand how the redun-
dancy is generated in the MPM code. In the 2D case, one
compares the 2D MPM code with template-based arith-
metic codes. Let T stand for the template used in the
arithmetic codes. In the 2D MPM code, an image X
is partitioned into 2D blocks of di�erent sizes. Within
each block B, the pixels in �T (B) are \not fully condi-
tionally coded" because their templates are incomplete.
If B consists of jBj pixels, j�T (B)j is O(

p
jBj), which

is dependent on the size of the block. This is di�er-
ent from the 1D case. In the MPM code for 1D data,
an input sequence is partitioned into substrings of di�er-
ent lengths, and the number of \not fully conditionally
coded" symbols in each substring is constant and does
not depend on the length of the substring. It is this dif-
ference that results in the term j�T (XrI�i�rI�i )j in (5),
and consequently an O(1=

p
logn) redundancy for the 2D

MPM code.

After understanding the cause of the redundancy of the
2D MPM code, the solution to a better redundancy is
clear. That is, we need to conditionally encode the bound-
ary pixels within each block in the multilevel representa-
tion of X. We achieve this by extending the 2D MPM
code to the case of context modeling, yielding a context-
dependent MPM code. First, let us de�ne the context
of a block of pixels. Let Ya�b be a block of pixels. Let
T be a template and �T (Y ) be the set of pixels in Y
with incomplete templates. De�ne CT (Y ) = fx : x 2
[y2�T (Y )Ty; x =2 Y g: We call CT (Y ) (or more precisely,
the geometric pattern of CT (Y )) the context of Y . For
example, using the template T and for the block Y shown
in Figure 2, we have �T (Y ) = f1; 2; 3; 4; 5;9;13g and the
context of Y is CT (Y ) = fc1; c2; � � � ; c9g.
Similar to the 2D MPM code without context mod-
els, there are two steps in the context-dependent MPM
code to compress an image X: construction of a mul-
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Figure 2: Context of a block

tilevel representation of X and encoding of this rep-
resentation. The di�erence is that, in both steps in
the context-dependent MPM code, we take into account
context information. First, X is partitioned into non-
overlapping blocks of size rI � rI . Denote this par-
tition as S0(x) = X1X2 � � �X jS0 (X)j. For each Xi 2
S0(X) let CT (Xi) be its context. We shall call the se-
quence (CT (X1); CT (X2); � � � ; CT (X jS0(X)j)) the context
sequence of S0(x), and use C = fc1; c2; � � � ; ckg to denote
the set of distinct contexts in it. TI is constructed and
then encoded conditioning on C, as described next. For
each context c 2 C, let Sc0(x) = Xi

c
1Xic

2 � � �Xickc , where
1 � ic1 < ic2 < � � � < ickc � jS0(X)j and all the blocks

Xicj 2 Sc0(x) share a common context c. Performing the
same operations to Sc0(x) as those to S0(x) in the the
2D MPM code without context models described in Sec-
tion II-A, we obtain a sequence T c

0 . Combining these
sequences T c

0 ; c 2 C; according to their original ordering
in the context sequence of S0(X), we obtain T0. Then, to
encode T0, we use jCj separate adaptive arithmetic codes,
one for each distinct context c in C and for the sequence
T c
0 . Of course, these jCj adaptive arithmetic codes work

in an interleaving manner according to the ordering in the
context sequence of S0(X). T1; T2; � � � ; TI are constructed
and encoded similarly.

Next, we analyze the performance of the context-
dependent MPM code for lossless image compression.
Fix a template T . For an image Xn, let L(Xnjr; T )
be the codeword length assigned to Xn by the context-
dependent MPM code when the parameter I is chosen as
O(log logn). De�ne a quantity

Hs(XnjT ) = inf
p2Ps(A)

min
T (x)2I(s); x2�T (Xn)

� log
nY
i=1

p(xijT (xi))

where p;Ps(A); T (x) and I(s) are de�ned the same as
in (1). Hs(XnjT ); s = 1; 2; � � �, represent the shortest
codeword lengths assigned to Xn by any arithmetic codes
using T as template. The following theorem compares
L(Xnjr; T ) with Hs(XnjT ).

Theorem 2 Let s be a positive integer and T is a tem-
plate. Then

max
Xn

1

n
[L(Xnjr; T )�Hs(XnjT )] = O(

1

logn
): (6)

The proof of Theorem 2 is similar to that of Theorem 1,
and is omitted due to page limit. Theorem 2 tells us
that, when using a template T , the context-dependent

Table 1: Compression rates in bits/pixel
Image 2D MPM MPM(con) JBIG(p) JBIG(s)
lena 0.197 0.148 0.149 0.135

baboon 0.598 0.498 0.532 0.488
sailboat 0.210 0.146 0.156 0.143
peppers 0.174 0.120 0.121 0.107
barbara 0.304 0.245 0.249 0.201
ti�any 0.035 0.022 0.028 0.023
airplane 0.033 0.030 0.033 0.025
airport 0.253 0.203 0.219 0.208
man 0.211 0.161 0.167 0.154

MPM code has an O(1= logn) worst-case redundancy rel-
ative to any arithmetic codes using the same template.
Comparing with the O(1=

p
logn) redundancy in the 2D

MPM code without context models, we see that the con-
text modeling we introduced to the 2D MPM code does
improve the compression performance. The experimental
results presented in next section also con�rm this. To
further investigate the e�ect of context modeling, we are
currently working on the comparison of L(Xnjr; T ) with
L(Xnjr).

IV Experimental results

In Table 1 we report some compression results on bi-
level images. The �rst six images in the table are
of size 512 � 512. The last three images are of size
1024�1024. We list the compression rates in bits/pixel of
the 2D MPM code without context models, the context-
dependent MPM code, and JBIG in progressive coding
mode and sequential coding mode, at columns 2 to 5 in
the table. In the context-dependent MPM code, we use
the simple template T shown in Figure 2. As can be seen
from the table, the context-dependent MPM code outper-
forms the 2D MPM code without context models signif-
icantly for all the tested images. Compared with JBIG,
the context-dependent MPM code outperforms JBIG in
progressive coding mode for all the tested images, and is
comparable to JBIG in sequential coding mode. One can
expect a better compression performance if a more com-
plicated context model is used in the context-dependent
MPM code. About complexity issue, it can be shown that
the context-dependent MPM code has time complexity
O(n) and storage complexity O(n), where n is the num-
ber of pixels in an input image to be compressed.
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