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Abstract— The Noisy Channel Coding Theorem discovered
by C. E. Shannon assumes infinite coding latency. The ob-
jective of this work is to identify the maximal achievable
(transmit) rates over noisy, delay-constrained channels, re-
ferred to as (e,n)-capacity C? with ¢ denoting target error
probability and n coding latency (viz. block length). We
investigate a family of block codes based on a probabilis-
tic construction that approaches delay-constrained capacity
closely and provably achieves the Shannon limit over an ad-
ditive white Gaussian noise (AWGN) channel. In the full
version of this paper we present an improved construction
of a probabilistic code with correlated codewords, enhanc-
ing its asymptotic distance by introducing a specific amount
of correlation between codewords. Analytical results show
that, if the correlation coefficients are chosen uniformly to
be —1/(M — 1), where M denotes the number of codewords,
the corresponding probabilistic code is asymptotically (in
the sense of block length) the “best-d,;,” code.
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I. INTRODUCTION

Ideas presented in the special issue [1] on codes and
graphs and iterative algorithms have allowed us to ap-
proach the Shannon limit of an additive white Gaussian
noise (AWGN) channel to within hundredths of a decibel
at the expense of very long block lengths. However, in
most applications where the system delay is strictly lim-
ited, approaching the Shannon limit becomes problematic.
To construct good block codes, the major parameters of
interest are the probability of block (word) decoding error
Pw, the code block length n, and the rate R. The Shannon
Noisy Channel Coding Theorem [2] states that, if R is less
than the Shannon limit C, no matter how close they are,
surely there exist codes for which the word error probability
Pw becomes small exponentially with increasing n. There
are, of course, prices to be paid for increasing the block
length, one of which is coding latency. At the transmitter
side, the first information bit in a block of incoming data
stream must generally be delayed by n samples (or sym-
bols) before a codeword can be formed, and at the receiver
it is the same case that decoding also requires a complete
codeword. The block length n is thus referred to as coding
latency. Note that the coding latency differs from the pro-
cessing delay in that it is inherent in a coding scheme and
can not be reduced by increasing the processing capability.

I1. (e,n)-CAPACITY

The definition of channel capacity involving coding la-
tency n and a target block error probability € is the follow-
ing.

Definition 1: Consider an (n,M) code with a block
length n, M codewords, and a block error probability not
greater than e. R > 0 is an (¢,n)-achievable rate if, for
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Fig. 1. The discrete-time additive white Gaussian noise channel.

every ¢ > 0, there exists at least such a (n, M) code with
rate
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The maximum (e, n)-achievable rate is called the (e,n)-
capacity C7'. The Shannon limit C is defined as the max-
imal rate that is (e,n)-achievable for all 0 < € < 1 and
for all positive integer n. It follows immediately from the
definition that

C = lim lim CT.
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For the sake of simplicity, we concentrate on a discrete-

time memoryless AWGN channel (as shown in Fig. 1),
which usually serves as a basic analysing tool for all other
kinds of non-ideal channels. Before going on, we cite
the well-known Shannon channel capacity formula — the
supremum of all rates R for which there exists at least one
code with vanishing error probability, that is

C=maxI(X;Y), (1)
pPx

where px denotes the probability distribution of the real-
valued channel input X and Y is the real-valued channel
output. This formula holds for any ergodic memoryless
channels [3]. Specifically, the Shannon limit of a Gaussian
channel with power constraint P and noise variance N is !

C

max [(X;Y)
EX2<P

= %10g2 (1 + %) 2)

and the maximum is attained only when X ~ AN(0, P),
where A(0, P) is a zero-mean Gaussian distribution of vari-
ance P.

Evaluating the (e, n)-capacity is not as simple as calcu-
lating the Shannon limit, but we can nevertheless employ
known analytical results to obtain an upper-bound as well

Hn this paper we deal with only real-valued channels; however the
results can easily be extended to complex channels, i.e., bandpass
signals represented in the equivalent complex baseband. In this case,
the factor of 1/2 in (2) does not appear.



as a lower-bound on the (¢,n)-capacity. A classic lower-
bound on the error probability for codes of a specific block
size is the sphere-packing bound developed by Shannon [4].
This bound has been recently employed as a useful tool
to evaluate the “imperfectness” of turbo codes [5]. The
problem posed by Shannon is to estimate, as well as pos-
sible, the probability of error for a “best” code of length n
containing M codewords, each of power P and perturbed
by Gaussian noise of variance N. We denote this mini-
mal or optimal probability of error by pSP*(M,n,/P/N).
The sphere-packing bound is equal to the probability that
the output sequence Y of the AWGN channel will not be
confined to the cone with a solid half-angel 6 centralized
with respect to the transmitted codeword, which can be
expressed in the form

P (M, \/PIN) > Qup(6) :/; (’;n‘/gl)\/s_flrn(%; _
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where A is the squared root of the signal-to-noise ra-
tio (SNR), i.e., v/P/N, I'(p) is the Gamma function
Joo ! _tdt and 6 is the root of the following equation:
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For moderate to large n, (3) can be approximated with
great accuracy by

[G(Q) sin Qef(AQ*AG(G) cos 9)/2]n

vnm\/1+ G2() sin 0[AG(6) sin? 0 — cos ]’
(5)

where G(6) = (1/2)[Acosf + v A2 cos? 0 + 4], and (4) be-

comes, asymptotically,

QSP(G) ~
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The sphere-packing lower bound on word error prob-
ability would be reached with equality only if the code
were a perfect code for the channel, i.e., if equal-size non-
intersecting cones could be drawn around every codeword
to completely fill the n-dimensional space. Such a parti-
tioning is clearly possible only for n=1 or 2, if M > 2
[4]. It is very plausible intuitively that any actual code
would have a higher probability of error than a sphere-
packing code. Recognizing the monotonically increasing
error probability with more codewords, the rates specified
by the sphere-packing bound can naturally be utilized to
upper-bound the (e, n)-capacity.

Shannon also computed an upper bound on word er-
ror probability by a spherical “random coding” method
[4]. The random coding bound gives an expression for
the ensemble average word error probability, averaged over
the ensemble of all possible spherical codes, where each
codeword is selected independently and completely at ran-
dom, subject to an equal energy constraint. As n grows

large enough, an asymptotic formula of the random coding
bound turns out to be the sphere-packing bound multiplied
by a factor essentially independent of n, that is

PP (M, n, \/P/N) < QTC(Q)
= Qu(9) +2”R/ LG5 + Dising)" ™ [n
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Since the average error probability over the ensemble of
spherical random codes satisfies (7), it is clear that at least
one code in the ensemble must have a sufficiently small
error probability, i.e. at least one code of block length n
meets the target error probability € with a certain rate,
which in turn, gives rise to a lower bound on the (e,n)-
capacity. It is worth emphasizing that, in the case of mod-
erate to large n, the multiplying factor in (7) is just a lit-
tle over unity; the sphere-packing and the random-coding
bounds are close together, thereby yielding a sharp esti-
mate of the (e,n)-capacity.

The significance of the definition of (e,n)-capacity can
be seen from the following numerical example. Consider
an AWGN channel on which we wish to transmit informa-
tion with rate 1 bit per sample, for which the minimum
SNR specified by the Shannon limit is 3.0. By applying
the sphere-packing bound, Fig. 2 shows that, for the same
code rate, the minimum threshold for reliable communica-
tion (in the sense of achieving a target error probability) is
significantly higher than the corresponding Shannon limit,
provided that the code block length is constrained to a rel-
atively small size. For some real-time applications where
large delay is not tolerable, the Shannon limit does not con-
vey much useful information, but the (e, n)-capacity reveals
the ultimate limit in such cases instead. It is suggested
that, even if a code operates far from the Shannon limit it
might perform nearly as well as the best code possible of
the same length.

A quantitative overview of (¢, n)-capacity (upper bound)
versus the Shannon limit is exhibited in Fig. 3. It should
not be surprising that, if the code block length is less than
104, only the rates significantly lower than the Shannon
limit are achievable. For example, codes of block size 100
have a penalty of 0.3 bits per sample with p, = 1073,
and even a penalty of over 0.5 bits per sample with p,, =
1071% as compared with the Shannon limit. The Shannon
limit can be approached within 0.05 bits per sample only
for block sizes 100,000 and greater. Again, it is evident
that, not the Shannon limit, but the (e, n)-capacity should
be employed in evaluating a practical coding scheme with
finite block lengths.

Plotted in Figs. 4 and 5 are comparisons of the sphere-
packing bound and the random-coding bound with varying
block sizes. In particular, information on the upper and
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Fig. 3. Upper bound on (€, n)-capacity by the sphere-packing bound
for codes with varying block size n, operating over a continuous-
input AWGN channel at a SNR of 3.0 (4.7712 dB), and p, =
1073,1074,107°%,10~%,10~10, respectively.

lower bounds on the (e, n)-capacity is shown. In this spe-
cific setting and for n > 100, the upper and lower bounds
on the (e, n)-capacity are close together enough, thereby de-
livering precise information concerning the (e, n)-capacity,
whereas when n < 100, the upper bound and the lower
bound are apart and thus the question of determining
(e,m)-capacity for this blocklength region still remains
open.

Additional insight into the implications of Figs. 4 and
5 may be obtained by re-examining the definitions of the
sphere-packing bound and the spherical random-coding
bound. As we know, the performance limit corresponding

The minimum required signal-to-noise ratio (SNR) by the
Shannon sphere-packing bound for codes with varying block size
n and rate 1 bit per sample, operating over a continuous-input
AWGN channel at p,, = 1072,10~4,1075,107%,10~ 10, respec-
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Fig. 4. Signal-to-noise ratio by the spherical random-coding bound
(as compared with the sphere-packing bound) for codes with
varying block size n and rate 1 bit per sample, operating over
a continuous-input AWGN channel at p,, = 1076.
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Fig. 5. Achievable rates by the spherical random-coding bound (as

compared with the sphere-packing bound) for codes with varying
block size n, operating over a continuous-input AWGN channel
at a SNR of 3.0 and p,, = 10~%. Note that the discontinuity in
the short blocklength region is caused by numerical difficulty.

to the sphere-packing bound would be reached with equal-
ity only if the code were a perfect spherical code for the
continuous-input AWGN, i.e., if equal-sized cones could be
drawn around every codeword so as to completely fill the
n-dimensional space without intersecting. Actually this is
impossible for all n > 2. On the other hand, we demon-
strate that the spherical random-coding bound is virtually
indistinguishable from the sphere-packing bound for block
sizes greater than a few hundred. Therefore it is tempting
to construct probabilistic codes to “approximate” the en-
semble of spherical random codes, rather than search for a
deterministic “best” code which does not exist at all.



III. PrROBABILISTIC CODES

Definition 2: Probabilistic code with independent
codewords—An (n, M) probabilistic code for a certain
channel with power constraint P consists of the following;:
e For each encoding block, generate M codewords
X1, X3, ..., X}y, that satisfy the power constraint P, i.e.,
for every codeword

w=1,2,..., M, (8)

where codewords X! are created by independent identi-
cally distributed random variables X,,, subject to a com-
mon distribution Px [3] maximizing input-output mutual
information I(X;Y), e.g., for an AWGN channel, Px ~
N(0, P).

e An encoding function X : {1,2,..., M} — A", selecting
one codeword from the codebook and passing it through
the channel.

o A synchronization scheme between the encoder and de-
coder that guarantees that the decoder will generate an
exact copy of the codebook of encoder for each block. In
other words, the receiver has perfect knowledge of the ran-
dom sources X,,.

e A decoding function

g: YY" —={1,2,...,M}, (9)

which is a deterministic rule that assigns an estimate to
each possible received vector.

The definition of probabilistic code has the effect of
“combined coding and modulation” (baseband), i.e. the
encoder feeds its output directly to the AWGN channel.
In our notation, the transmission rate is measured as
R= %, which can be made readily larger than 1 bit per
sample simply by generating a large number of codewords
such that M = 2",

The probabilistic code is inherently time-varying, i.e.,
the codebook varies from block to block and the codeword
with the same index w does not remain the same for differ-
ent blocks. This scheme differs from the conventional con-
cept wherein a deterministic codebook is selected once and
used repetitively. The time-varying nature ensures that
the channel input resembles a stochastic process with an
appropriate distribution, which maximizes the mutual in-
formation of channel input and output.

The probabilistic code should not be confused with the
standard method of proof of coding theorems based on
a random-coding argument. Whereas a probabilistic code
constitutes a communication technique, a random-coding
argument is a proof technique often used to establish the
existence of a (single) deterministic code which yields good
performance on a specific channel without actually con-
structing the code. This is done by introducing a proba-
bility mass function (pmf) on an ensemble of codes, com-
puting the corresponding average performance over such
an ensemble, and then invoking the argument to show that
if this average performance is good, then there must exist

at least one code in the ensemble with good performance.
In contrast, a probabilistic code constitutes a communi-
cation technique, the implementation of which requires the
availability of a common source of randomness at the trans-
mitter and receiver.

It can be proved that if block length n tends to infinity,
the probabilistic code is capable of achieving the Shan-
non limit by means of a suboptimal decoding procedure—
typical set decoding [6]. Intuitively, the performance of a
probabilistic code with independent codewords approaches
closely the average performance of the ensemble of spheri-
cal random codes for moderate to large block lengths. This
suggests that the probabilistic code is capable of approach-
ing delay-constrained capacity closely except for very small
block lengths.

Due to the space limitations we cannot give a detailed ac-
count of the probabilistic code with correlated codewords,
but we summarize the main results instead. Using a linear
transformation, we derive a new construction of a proba-
bilistic code with correlated codewords, thus improving its
asymptotic distance by introducing a controlled amount
of correlation between codewords [7]. Analytical results
show that, if the correlation coefficients are chosen uni-
formly to be —1/(M — 1), the corresponding probabilistic
code is asymptotically (in the sense of block length) the
“best-dpin” code.

IV. REMARKS

The decoding complexity of probabilistic codes with in-
dependent or correlated codewords grows exponentially
with the block lengths, while they are the right codes ca-
pable of approaching the (e, n)-capacity closely except for
very small block lengths. The theoretical characterization
of the (e,n)-capacity and its corresponding optimal codes
offers insights into how the optimal block codes look like
and what is the maximum achievable rate under a critical
coding latency constraint. The (e, n)-capacity can be used
as a natural criterion against how good a practical coding
scheme is with a finite block length.
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