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Abstract. We consider a cryptographic scenario
when legal users share no secret key initially but their
goal is to generate a shared information -
theoretically secure key in the presence of an active
eavesdropper. Some center broadcasts random string
over noisy channels to legal users and this string can
be received by an eavesdropper too. The main
assumption is that legal channels are superior to
illegal one. We focus our attention on the problem of
authentication because an eavesdropper is active.
Unfortunately, the use of the code authentication [1,
2] occurs ineffective because it requires very long
authenticators that results in a very low key rate. We
propose the hybrid authentication (HA) that
combines both the code authentication and the
authentication based on Almost Strong Universal2

(ASU2) class of hash functions [3]. The main
contribution in the running paper is the theorem that
allows to estimate the probability of incorrect
authentication based on ASU2 hashing and the use of
partially secret key obtained after privacy
amplification procedure. An example is presented to
confirm that HA results in larger key rate than “pure”
code authentication.

1. Introduction
We consider a particular case of broadcasting by

friendly party some random chosen binary string X0

of length k0 to legal users Alice and Bob over binary
symmetric channel (BSC) with bit error probabilities
εA and εB, respectively, whereas an eavesdropper
(Eve) receives the same string over BSC with bit
error probability εE. We assume that εA < εE and εB <
εE, because it has been proved in [1] that key sharing
problem is solvable if and only if these conditions are
true.

To share information-theoretically secure key in
a cryptographic scenario presented above it is
necessary to reconcile the strings received by legal
users and to apply privacy amplification procedure.

The first procedure is necessary to correct errors in
the strings X and Y that are noisy versions received
by Alice and Bob, respectively, after broadcasting the
string X0. It can be done by sending by Alice a check
string to Bob (or vice versa – sending by Bob a check
string to Alice). The second procedure consists in a
hashing by legal parties their reconciled strings into
shorter key string. It is necessary in order to bound
the information that Eve can gain about the final key.
But before doing it one of the legal parties has to pick
up randomly a hash function from Universal2 class of
hash functions and then send this function to another
party. It is easy to prove that the probability to
reconcile X and Y approaches 1 as k0 → ∞ if the
number of check symbols r0 satisfies the condition

r0 ~ k0 h(εAB)  (1)

where h(..) is the entropy function and
εAB = εA + εB (1 – 2εA).

The average amount of Shannon information I0

about the final key leaking to an eavesdropper if she
knows hash function, check string and
eavesdropper’s string Z, can be upper bounded as
follows [4, 5]:
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where l0 is the length of final key and t0 is the Renyi
information about X obtained be Eve from her string
Z. In the case of broadcasting over BSC-s, the Renyi
information can be found as follows
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where εAE = εE + εA (1 – 2εE)
Since an eavesdropper is active she can change

both the check strings and the hash functions (also
presented as some strings) transmitted by Alice. It



enables Eve to share false key with Bob. To prevent
such Eve’s attack Alice should authenticate these
messages containing roughly k0(1 + h(εAB)) bits. Due
to lack of secret keys possession by legal parties, the

use of the parts X
~

(Y
~

) of initial strings X (Y ) is
necessary to provide this authentication. The method
of code authentication based on smaller difference

between the strings X
~

 and Y
~

 rather than X
~

 and Z
~

can be used to solve this problem. Then the

authenticator δ taken from some bit positions of X
~

is appended to message M in line by a certain rule to
each message M. This rule can be considered as some

binary block code of length 0

~
k  consisting of 2s code

words for each of 2s possible messages, where 0

~
k  is

the length of X
~

(Y
~

) and s is the length of message
being authenticated.

The simplest way to design such authentication

code [1] is to take some binary linear ( 0

~
k , s) – code

with maximum possible Hamming distance d and
replace every bit in its code words by pair of bits
following the rule: 0 by 01 and 1 by 10. Then the
following relations for the probability PRe (to be
rejection of the original message by Bob when an
intruder has not intervened into transmission at all)
and PCh (to be the acceptance of the false message by
Bob if it has been changed by an intruder) are true,
respectively [2]:
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where εBE = εB + εE (1 – 2εB), l
~

 is some fixed
threshold.

Example 1. Consider binary BCH code (1023,
208, 231). Let us select εAB = 0.0177 and εBE = 0.2,
then using (4) - (5) we get PRe ≈ 1.1*10-4, PCh ≈
1.0*10-4 for l

~
=35.

It is wise to perform the optimixation procedure.

Given the parameters εA, εB, εE, 0

~
k , PRe and PCh,

minimize the length of the authenticator over all ( 0

~
k ,

s, d) codes.

2. Hybrid Authentication

Unfortunately, the use of even the best
authentication codes results in very long
authenticators and requires huge consumption of the
X(Y) string material [1, 2]. More effective hybrid
authentication can be described as a part of the
following key sharing algorithm secure against active
eavesdropper.

1. Alice and Bob divide the received strings X(Y)
of length k0 into three parts X1(Y1), X2(Y2) and X3(Y3),
which have the lengths k1, k2, k3, respectively.

2. Alice forms the check string c2 of length r2 for
her substring X2 using the check matrix of some
binary linear (n2, k2) – code V, where n2 = k2 + r2. The
initially chosen code V should have a constructive
error correcting algorithm that is capable to reconcile
the strings X2 and Y2 with high probability.

3. Alice generates a truly random hash function
h2 taken from Universal2 class for privacy
amplification of X2. Then the length of binary string
to represent h2 has to be k2.

4. Alice sends to Bob over a public noiseless
channel both c2 and h2 using the authentication code
considered in the Introduction, based on her substring
X3.

5. Bob verifies the authenticity of the received
strings c2 and h2 using authentication code and his
substring Y3, as it was described in the Introduction.

6. Bob corrects error on Y2 using the received
check string c2. (We believe that after the completion
of error correcting procedure Bob obtains the string

2

~
Y  that coincides with X2 with high probability.)

7. Both Alice and Bob hash their strings 2X  and

2

~
Y  respectively (which should be the same with high

probability) into shorter string S0 having such a
length l that the information of S0 leaking to Eve is
negligible (see (2), where k0, r0 and l0 should be
changed to k2, r2 and l, respectively).

8. Alice forms the check string c1 of length r1 to
her substring X1 using the check matrix of some

binary linear (n1, k1) – code V
~

, where n1 = k1 + r1.

The initially chosen code V
~

 should have a
constructive error correcting algorithm that is capable
to reconcile the strings X1 and Y1 after the completion
of error correcting procedure with high probability.

9. Alice generates a truly random hash function
h1 taken from Universal2 class for privacy
amplification of X1. Then the length of binary string
to represent h1 has to be k1.

10. Alice sends to Bob over a public noiseless
channel both c1 and h1 using the authentication based



on keyed hashing in the class ε - ASU2 hash functions
with the key S0 obtained in the step 7.

11. Bob verifies the authenticity of the received
strings c1 and h1 using ε - ASU2 based algorithm and
the key S0 obtained in the step 7. (A description of
the class ε - ASU2 functions will be given below).

12. Bob corrects errors on Y1 using the received
check string c1. (We can believe that after the
completion of error correcting procedure Bob obtains

the string 1

~
Y  that coincides with X1 with high

probability).
13. Both Alice and Bob hash their strings 1X  and

1

~
Y , respectively (which should be the same with high

probability after error correction) into shorter string
K having such a length l0 that the information of K
leaking to Eve is negligible (see (6), where k0 and r0

should be changed to k1 and r1, respectively and t0 is
the Renyi information about X1 obtained by Eve from
her string Z.

The final key K produced by both of the legal
parties can be used as a cryptographic secret key
either to encrypt long messages in computational
secure cryptosystems or to encrypt messages of the
same length in ideal time – pad cryptosystems.

The “trick” of hybrid authentication is that
authentication procedure based on ε - ASU2 class can
be used with short enough keys. Hence large string
material consumption which is necessary for code
authentication using the strings X2(Y2) does not
practically affect on the key rate because it is
commonly to take k1 >> k2. But the “bottleneck” of
hybrid authentication is keyed hashing in the class of
ε - ASU2 with partially secret key S0 obtained after
privacy amplification of the substrings X2(Y2).
Unconditionally – secure authentication with a
partially secret key and the use of Strong Universal2

hashing has been considered in [6]. But we need an
extension of that theory to the ε - ASU2 class of hash
functions.

Let us remember the authentication technique
based on keyed hash functions. Consider a class F of
hash functions {0, 1}a → {0, 1}b, a > b, each of them
can be compared with the key, chosen at random.
Then we can take the message (the bit string of the
length a) as an argument for a hash function and the
output bit string of the length b – as an authenticator
that can be appended to the message string.
Assuming that a verifier knows the authentication
key he (or she) can calculate the hash function of the
received message and compare the result with the
received authenticator. In the case of their

coincidence the message is accepted as a genuine one
and rejected otherwise. It is very attractive to select
as a class F of hash functions the so called ε - Almost
Strongly Universal2 (ε - ASU2 for short) class because
it allows to save the length of keys [3].

Denote by A = {0, 1}a and B = {0, 1}b the sets of
messages and authenticators respectively. A class F
of ε - ASU2 hash functions satisfies the following two
conditions [3]:

B

F
f =#

if f ∈  F, f(α) = β, for every α ∈  A, β ∈  B, where |X|
denotes the cardinality of the set X.

B

F
f

ε
≤#

if f ∈  F, f(α1) = β1, f(α2) = β2 for every distinct α1, α2

∈  A and for every β1, β2 ∈  B. An (1/|B|) - ASU2 class
is called Strongly Unversal2 (or SU2).

We suggest to use the authentication scheme
based on ε - ASU2 hashing in the steps 10-11 of key
sharing algorithm. Then the key to hashing procedure
occurs only partially secure because it is obtained in
the step 7 after privacy amplification of the strings
X2(Y2) and hence Eve has some information (very
small as a rule) about this key.

The following theorem is the main contribution
of the running paper:

Theorem. The expected conditional probability
Pf of false authentication based on ε  - ASU2 keyed
authentication and partially secret key S0, averaged
over all randomly chosen by Alice hash functions to
provide the key S0 is upper bounded as follows
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where b
~

= - log2 ε, l is the length of the key S0,

t = - 
l

1
 log2 PC, PC is the minimal possible value

satisfying the inequality
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(The proof of this theorem is given in [7]).



Using this theorem we can maximize the key rate
given parameters εA, εB, εE.

Example 2. Let us take εAB = 0.01, εAE =  εBE =
0.2, PR (the probability that the amount of Shannon
information I0 about the final key K leaking to an
eavesdropper can be exceeded) ≤ 10-4, PCS (the
probability of correct key sharing between legal
parties when an eavesdropper did not intervened at
all) ≥ 0.99, I0 ≤ 10-10 bit, l0 (the final key length) =
2048.

Using the formulas (2) and (3) we get the
following parameters for the first substring X1(Y1): k1

= 5672, r1 (the length of check string to X1) = 1071.
Next we use a class of ε  - ASU2 functions (A → B)

[3] with parameters: ε = (i + 1) / q, |A| = 
i

q 2 , |B| = q,

where i, q are arbitrary integers. If we take i = 7,
q = 223, this method allows to authenticate strings of
length 6784 that is enough to authenticate hash
function of the length 5672 and 1071 check bits. The
key length should be then 477. To produce the key S0

of the length 477 we can select k2 = 2686 and r2 =
563. Code authentication can be done by the use of
binary linear code (4832, 3246) with minimal code
distance 292. Eventually, it results in the full length
of the string X(Y) as k1 + k2 + k3 = 18034 bits to
produce information – theoretically secure and
reliable final key of the length 2048. It can be easy
shown that the use of “pure” code authentication for
the same length of final key requires the length of
X(Y) equals to 23406 bits. This moderate difference
in efficiency between HA and code authentication
can be increased for larger key lengths l0.

3.Conclusion
The main goal of this paper was to elaborate

hybrid authentication. But it cannot be considered
isolated from a key sharing because eventually we
want to provide the maximal possible key rate and
nothing else.

Our contribution to this theme is to extend the
bound proved before for SU2 – class hashing for the
probability of undetected modification of a message
to the case of ε - ASU2 hashing. We represent also an
algorithm to select the parameters of hybrid
authentication (and as a matter of fact, the parameters
of key sharing protocol based on noisy channels). We
are going to consider an example of such
optimization in the future and we hope that hybrid
authentication provides an advantage in comparison
with pure code authentication. The difficulty consists
in finding effective classes of ε - ASU2 hashing. It

seems likely that interactive authentication codes [8]
can be adopted specially for this purpose as well. It is
not inconceivable that hybrid authentication becomes
very effective for large enough key length (beginning
from tens of hundred thousand bits). Then they can
be changed to such bounds which are especially
effective for large block lengths. Anyway, we hope
that this paper is some contribution to move perfect
secret key agreement based on noisy channels closer
to being practical.
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