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I. INTRODUCTION

The problem of zero-error source coding when the de-
coder has side-information unknown to the encoder is con-
sidered. With the advent of networks such as the Internet,
distributed storage and retrieval of very large databsaes
is seen as a promising possibility. Recently, this has re-
newed interest in multi-terminal source coding frameworks
such as distributed source codes. The scenario of the side-
information problem - where the encoder tries to exploit
side information about the source available to the decoder
but not to itself - is important both as a canonical distrib-
uted source coding system, and as a fundamental building
block of more intricate real-world systems. The zero-error
version of this problem, apart from its significance in prac-
tical applications, has also been studied due to its connec-
tions with basic graph-theoretic quantities.

We characterize the minimum asymptotic zero-error rate
for variable-length side-information codes as the comple-
mentary graph entropy of an associated graph. We then
briefly discuss some new properties of the complementary
graph entropy revealed by this result. After formulating
the problem in section 2, we summarize and discuss our
results in section 3. In section 4 we prove the main result
of the paper.

II. PRELIMINARIES

Let (X,Y) be pair of random variables distributed over
a finite product set V' x U according to a probability dis-
tribution P(z,y). A sender P, knows X while a receiver
Py knows Y and wants to learn X without error. We as-
sume: 1) communication is permitted only from P, to Py;
2) there are no transmission errors; 3) P, must be able
to tell when P,’s codeword ends; 4) both communicators
use an agreed-upon code designed with knowledge of the
underlying probability distribution P. We call this the
side-information problem.

Distinct x, 2’ € V are confusable if there is a y € U such
that P(z,y) > 0 and P(2’,y) > 0. Two confusable let-
ters may not be assigned the same codeword in any valid
code. Thus confusability defines a binary symmetric rela-
tion on the letters of V. Witsenhausen, [1], captured this
confusability relation of the source pair (X,Y) in the char-
acteristic graph G. G = (V, E) is defined on the vertex set
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V, and distinct z, 2’ € V are connected by an edge if they
are confusable. The pair (G, P) denotes the probabilistic
graph consisting of G = (V, E) together with the distrib-
ution P over its vertices. (Here we denote also by P the
marginal distribution on V' derived from P(x,y).)

Variable-length codes for the side-information problem
were introduced by Alon and Orlitsky in [2]. A valid code
for (G,P) is a mapping ¢ : V — {0,1}* such that if
(z,z') € E then ¢(z) is not a prefix of ¢(z’). The rate
of a code ¢ is the expected number of bits transmitted:

U¢) = Pla)lé(z)]. (1)
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To define variable-length block codes, we extend the no-
tion of confusability to vectors. Thus, distinct z™ =
(z1,@2,++,Tpn), 2™ = (2f,25,---,2) € V™ are confus-
able if every distinct pair (z;,z}),i = 1,2,---,n is con-
fusable. The characteristic graph for (X™,Y™) is then the
so-called n-fold normal product of G with itself, denoted
G". G" = (V",E,), with (2™,2™) € E, if (x;,2}) € E
for all distinct pairs z;, 2} € Vi = 1,2,---,n. We de-
note by P" the product distribution induced on V™ by
P: P*((z1,%2, - -,xy)) = II?_;P(x;). The previous defi-
nitions of valid codes for (G, P) may now be extended to
block codes for (G™, P™).

We shall briefly summarize some standard notations and
concepts from graph theory, which we will use extensively
in the sequel (see, for example, [10]). We assume that all
graphs are undirected and have no loops or multiple edges.
For our purposes, these assumptions do not entail loss of
generality. Two distinct nodes are connected in G - the
complement of G = (V, E) - if they are not connected in
G. A subset of the vertex set V is an independent set
of G if it induces an edge-free subgraph in G. Let a(G)
- the independence number of G - be the maximum size
of an independent set of G, and let x(G) - the chromatic
number of G - be the minimum cardinality of a coloring of
G, i.e., a partition of V into independent sets. It is clear
that a(G) < x(G), and a(G)x(G) > |V|. The subgraph
G' = (V',E’) induced in G by a subset V' C V is called an
induced subgraph. G is a perfect graph if x(G’) = a(G")
for every induced subgraph G’ of G. For the extensive
literature on perfect graphs, see [10], and the references
therein.

Finally, note that all logarithms are to base two.



IIT. SUMMARY OF RESULTS
A. Characterization of Minimum Asymptotic Rate

Let L(G™, P") denote the minimum rate of a valid
variable-length block code for (G™, P™). The minimum as-
ymptotic rate per source letter required for the side infor-
mation problem is

R = tim A @)
n—o0 n
The characterization of R* was first considered by Alon
and Orlitsky in [2]. They defined the chromatic entropy of
a probabilistic graph, H, (G, P), as the minimum entropy
of its colorings. They then showed that

n n
R* = lim 7HX(G . P ), (3)
n—oo n

but a single-letter characterization of R* remained elusive.
In Section 4, we build on the results of Alon and Orlitsky
to characterize the minimum asymptotic rate as the com-
plementary graph entropy, H(G,P), of the characteristic

graph (G, P). In particular, we prove that

lim
n— oo n

Motivated by a two-step source coding problem, [3],
Korner and Longo defined two information-theoretic
functionals on probabilistic graphs: the graph entropy,
H(G, P), and the complementary graph entropy, H(G, P)
(this is also referred to as the co-entropy or the m-entropy
in the literatture). They then showed that these quantities
characterize the minimum asymptotic rates for the coding
problems they considered. While Kérner derived a for-
mula for H(G, P) in [4], no formula is currently known for
H(G, P). In [5], Marton revealed the close connection be-
tween the complementary graph entropy and the Shannon
(zero-error) capacity, [6]. Thus, a formula for the comple-
mentary graph entropy of an arbitrary probabilistic graph
would imply, via her results, a formula for the Shannon
capacity of the corresponding graph. This, in turn, would
resolve a major unsolved problem of information theory
and graph theory.

Upper and lower bounds for H(G, P) have been studied
by Csiszar, Kérner, Marton and others. In [3], Kérner and
Longo established bounds for H (G, P) in terms of H(G, P)
and H(G, P):

H(P)- H(G,P)< H(G,P) < H(G, P), (5)

where H(P) is the Shannon entropy of P.

Csiszér et al., in [7], showed that both the bounds above
are tight for all distributions P if the graph G is perfect.
Other bounds on H(G, P) include Marton’s bounds in [5],
in terms of a generalization of the Lovdsz #-functional, [8],
to probabilistic graphs.

B. Further Results

The result (4) may be viewed as a new characterization
of the complementary graph entropy in terms of the chro-
matic entropy. Exploring this viewpoint, and using the
properties of H, (G, P), we continued the investigation of
H(G, P). We will only briefly summarize our results here;
due to lack of space, we will not be able to supply detailed
proofs.

An interesting re-formulation of (5) is the following in-
equality, for arbitrary (G, P):

H(G,P)+ H(G,P) > H(P). (6)

We prove a generalization of (6) in the following inequality,
valid for arbitrary (G1, P) and (Ga, P):

ﬁ(Gl,P)+H(G2,P)ZFI(G1UG2,P). (7)

Here, Gy = (V,E;) and Gy = (V, E3) are defined on the
same vertex set V. G1 UGs = (V, E; U Es), is the graph
union of G and Gs.

Graph entropy is subadditive w.r.t graph union. Korner
posed the question: Is the complementary graph entropy
[5] also subadditive? It was previously known that

H(Gy,P) + H(Gs, P) > H(G1 U Gy, P) (8)

when (i) G1 U Gy is perfect [5] (4i) G1 and G are both
perfect [7]. It follows from (7) that it is in fact sufficient
for either G1 or Gs to be perfect.

In some applications, fixed-rate channels - which rule out
the use of buffers - may force the use of fixed-length codes.
The minimum rate for fixed-length coding is the number

R(G) = lim - logx(G"). )

This quantity is also of interest in graph theory, as char-
acterizing the growth of chromatic numbers of the normal
products of a graph. We prove the following equation, re-
lating R(G) to H(G, P):

R(G) = mng(G,P). (10)
This relation has a simple coding interpretation. If the
underlying graph G is fixed, but the source distribu-
tion P is not known, the encoder, using variable-length
codes designed for the worst case, transmits at a rate
maxp H(G, P). Alternately, the encoder uses fixed-length
codes, in which case the rate required is R(G). The result
(10) ensures that this alternate strategy is, in fact, optimal.
The zero-error capacity of a graph G = (V, E) is [6]
1

C(G) = limgloga(G"). (11)
It follows, from x(G™)a(G™) > |V|™, that R(G) + C(G) >

log |V|. We show that equality holds, i.e.,

R(G) + C(G) =1log|V],

when G is vertex-transitive. (A permutation of V' is an au-
tomorphism if it preserves adjacency of the vertices. If for
each pair of vertices 7,j € V there exists an automorphism
mapping ¢ onto j, then G is said to be vertex-transitive.)

(12)



IV. MINIMUM ASYMPTOTIC RATE AND THE
COMPLEMENTARY GRAPH ENTROPY

The chromatic entropy of a probabilistic graph (G, P)
(where G = (V, E)), Hy (G, P), was defined in [2]. If ¢ is
a function defined over V, then ¢(V) is a random variable
with entropy

1 1
> Pl (Nog Fr=rv7:

vEe(V)

H(c(V)) =

where ¢~ is the inverse of c.
Definition 1: The chromatic entropy of (G, P) is the low-
est entropy of any coloring of G:

H,(G,P) =min{H (c(V)) : ¢ is a coloring of G} . (13)

Let R,, be the minimum rate of a uniquely decodable (not
necessarily instantaneous) code for (G™, P™). The follow-
ing lemma bounds R,, in terms of H, (G™, P™):

Lemma 1:

H,(G™, P") — log{H(G",P") 4+ 1} —loge < Ry;
R, < H,(G",P") + 1. (14)

Proof: Let ¢ : V™" — {0,1}* be a code for (G, P).
If distinct ™, 2™ € V™ are confusable and, further, if
o(z™) = ¢(z'™), then the decoder cannot distinguish be-
tween z™ and z'™, and ¢ is not uniquely decodable. In
other words, if ¢ is uniquely decodable, ¢(z™) = ¢(z'™) for
distinct ™, '™ implies that ™ and '™ are not connected
in G™. Thus ¢ may be written as the composition of a col-
oring of G™ and a one-to-one encoding of the colors. Now,
(14) follows from known upper and lower bounds on the
rates of one-to-one codes [2]. ]
Identical bounds as in (14) were proved in [2] for the re-
stricted class of instantaneous codes, and were then used to
calculate the minimum asymptotic rate of such codes. We
can therefore parallel these calculations, to determine the
minimum asymptotic rate for uniquely decodable codes.
Lemma 2:
" T
lim A (G P

n—00 n

lim — = (15)

n—oo N
Proof: The proof is identical to that of Lemma 6 in
[2]. |

Since the same asymptotic rate as in (15) is achievable
with instantaneous codes, Lemma 2 shows that the possibly
larger class of uniquely decodable codes offers no asymp-
totic advantage. While this situation is identical to that
obtained in regular lossless source coding, we are unable
to answer whether uniquely decodable codes also offer no
advantage in the case of finite block lengths.

The complementary graph entropy was introduced as an
information-theoretic functional in [3].

Definition 2: The complementary graph entropy of
(G, P) is the normalized logarithm of the “essential chro-
matic number of G™ with respect to P,” i.e., the number
min  {x(G"(4))}, (16)

_ 1
H(G,P) = limli —1
(G,P) lim lim sup oan<A>21_E

n—0o0

where G™(A) is the subgraph induced in G™ by A C V™.

Thus G™ has a high-probability induced subgrapph
which can be colored with approximately 2"H(G:P) colors.
Korner and Longo used this fact to show that the comple-
mentary graph entropy is the rate required for the following
two-step source coding problem: Consider a memoryless
source emitting symbols from a finite alphabet V' accord-
ing to a distribution P. Assume that some pairs of elements
of the alphabet are distinguishable, while some others are
not, and let G be the graph on V where connectedness
means distinguishability. We want to encode the n-length
source vector X™ in two steps. In the first step, an en-
coding function f on V™ is used, and it is required that,
on the basis of X™, the decoder be able to determine a se-
quence z" that is, with high probability, indistinguishable
from X™ in every co-ordinate. Call an encoder f achieving
this goal “G-faithful.” In the second step we want to en-
code X™ by an encoding function g such that the following
holds: the encoded source g(X™), together with an arbi-
trary G-faithful encoding of X™, determines X™ with high
probability. It was shown in [3] that the minimum asymp-
totic rate needed for such a “complementary encoding” in
the second step is H(G, P).

We will also need the generalization of the Shannon ca-
pacity, [6], to probabilistic graphs. This quantity was intro-
duced by Csiszar and Korner in [9] to study the capacity of
an arbitrarily varying channel with maximum probability
of error.

Definition 3: Let T™(P,€) be the set of “(P,e)-typical”
sequences in V™, i.e., the set of sequences z" € V™ for
which the frequency w(i|z™) of each element i € V satisfies

|7(i|z™) — P(i)| < e.

Let G™(P,¢€) be the subgraph of G™ induced by 7" (P, ¢).
Definition 4: The capacity of the graph G relative to P
is

- 1 n
C(G,P) = lgr(l) hrrbn—>solip - log a(G™ (P, ¢)). (17)

We will need the following relation between H (G, P) and

C(G, P) established by Marton in [5]:
H(G,P) + C(G,P) = H(P). (18)

Consider a fixed-length encoding function f : V? —
{1,2,---,2"%} for G* = (V", E,,) of which we require the
following property: if (¢, 2") € E,, then, with high prob-
ability, f(z™) # f(2'™). It follows from (16) that the min-
imum rate required is H(G, P). In the following theorem,
we show that H(G, P) is also the minimum rate required
if f is allowed to be a variable-length encoding function,
but where (z",2'™) € E, = f(z™) # f(z'™), is always
required.

Theorem 1:

R*=H(G,P), (19)

where R* is defined in (2).



Proof: We will show that

lim M = [f_](G’p).
n—»00 n
We begin by proving lim,, w < H(G, P). Fix
€>0. Let
- 1
H.(G,P) = limsup — log min X(G™(A))] .

n—oo N ACV™ P(A)>1—e¢

Then, for fixed § > 0, for each n > ng(d) there is a sub-
set A C V™ with P*"(A) > 1 — ¢, and a coloring ¢ of G
satisfying:

(G (4))] < 2nHAG PO, (20)

For z™ € V™, define the function ® : V™ — {0, 1} as

n J 1 ifa”eA
o(z ){ 0 else.

Thus @ is the indicator function of A. Estimating the en-
tropy of the coloring c,

H(c(V™)) < H(®) + H(c(V")[®),
< H(®) + H(c(V™)|V" € A) + eH(c(V™) V™ & A),
<1+ n{H.(G,P)+d+elog|V|},

where we used (20) in the last step. But, by the definition
of the chromatic entropy,

H,(G",P") < H(c(V")).

Normalizing by n and taking limits, the inequality follows.

Next, we show that lim,,_ . w > H(G,P). We
lower bound H, (G™, P™) in terms of the maximum size of
an independent set induced by 7"(P,¢) in G™. But this
size is related to the capacity C(G, P), and the inequality
will then follow from (18). Let us fill in the details. Fix
€ > 0. Define ® as the indicator function of 7™ (P,¢): for
" eVr

m | 1 ifa™ e T"(Pe)
®(a") = { 0 else.
Let the coloring function ¢ on G™ achieve H, (G", P™), so
that

H\(G", P") = H(c(V")).

To lower bound H(c(V™)), we use the following elementary
lower bound for the entropy function: if ) is a probability
distribution over the set @, and S C Q, then

H(Q) > —{>_Q(j)}log max Q(7)-

Jes
Thus we have the following estimate for H, (G™, P"):

H(c(V™) > —P(T"(P,¢€))log P(c(z™)). (21)

max
axmeTn(Pe)

But the set of (P,¢)-typical sequences 7"(P,¢€) captures
most of the probability [11]:

V]

4dne?’

P(T™(Pye)) >1— (22)
Further, in any coloring of G™, the maximum cardinal-
ity of a single-colored subset of 7"(P,e) cannot exceed
a(G™(P,€)), the size of the largest independent set induced
by T7"(P,¢€) in G™. Thus,

P(e(z™)) < a(G"(P,e€)) P(a"),

max max
xmeTn(Pe) aneTn(Pe)

< Ot(Gn(P, e))z—nmin{H(P’)+D(P’||P):\P'(i)—P(i)|<eViEV}’

< a(G"(P, e))Q—nmin{H(P)-&-e\V\loge}’ (23)
where we use a known formula for the probability of a
typical sequence, and the uniform continuity of entropy,
[11].

Substituting (22) and (23) in (21), we obtain
H,(G",P™) >

n

(1 _ 4':;'2) {H(P) ~ Zloga(G"(P0) +6|V|loge},

and taking the limit,
H,(G", P"
lim —X(G . P%)

n—0o n

where C(G, P) is defined as (cf. (17)):

> H(P) — C.(G,P) + €|V]loge,

C.(G, P) =limsup 1 log a(G™(P,¢)).

n—oo N

Now, letting € — 0 and using (18), the result follows. MW
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