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Abstract—We design a Nakagami multi-channel simulator by model-
ing the received combined signal-to-noise ratio as a finite-state Markov
chain, following a previously proposed approach. Our model generates
directly the error process at the output of a diversity receiver and can em-
ulate selection, maximal-ratio and equal-gain combining. As the order
of diversity increases, the savings in computational complexity augment
linearly with respect to a traditional waveform simulator.

I. INTRODUCTION

The assumption that a fading channel can be modeled as a
Markov chain can be used to design various low-complexity
simulators. Instead of generating the correlated envelope of
the channel, which then needs to be processed to determine
if a decision error is made, one can directly produce the er-
ror process seen at the output of the demodulator. For over
half a century, researchers have tried to fit such discrete-time
models to realistic radio channels. These models range from
the early Gilbert-Elliott two-state channels [1] to more com-
plex models such as those based on hidden Markov chains
[2]. The Finite State Markov Channel (FSMC) proposed in
[3] has attracted quite some attention due to its good balance
between accuracy and complexity. It is based on the parti-
tioning of the received signal-to-noise ratio (SNR) in a finite
number of states. The use of a first-order Markov process to
model the envelope of a Rayleigh channel has been shown to
be a good approximation in [4], using an information theoretic
criterion, and was discussed recently in [5]. A higher-order
model was proposed to represent Nakagami channels in [6],
however the complexity of the calculations (requiring the nu-
merical evaluation of double integrals) make its use less at-
tractive. In previous papers FSMC’s were mostly designed to
model flat fading channels. If one needs to simulate the mul-
tiple paths of a channel in order to take into account diversity,
the execution time of a waveform simulator increases with the
number of diversity branches. Instead, one can generate di-
rectly the error process seen at the output of the diversity re-
ceiver. This technique was used in [7] for selection combin-
ing (SC) and Rayleigh fading, and was slightly discussed in
[6] for an approximation to equal-gain combining (EGC) in
Nakagami fading. Our works tackles the design of FSMC’s
for selection, maximal-ratio and equal-gain combining, in a
generalized fading (Nakagami) environment. In the next sec-
tion we derive the analytical steady state, transition and er-
ror probabilities for these three combining methods, in addi-
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tion to the non-diversity case. These are integrated in a low-
complexity simulator, whose first and second order statistics
are compared with theoretical expressions in Section III.

II. FSMC’S FOR DIVERSITY NAKAGAMI CHANNELS

At first we review the steps needed to design a FSMC, for
arbitrary specifications of the channel and combining method.
In later sections we specialize the model to a Nakagami fading
channel without, and with SC, MRC and EGC diversity.

A. Review of FSMC Model

We use the approach first proposed in [3] to construct a
FSMC. Let be the combined envelope of the channel at the
output of the diversity receiver, and the postde-
tection SNR per symbol of the received signal. Let and

be the probability density (pdf) and cu-
mulative density (cdf) functions of . We define partitions
for such that if , , then
the FSMC is said to be in the state . The ’s are the thresh-
olds of the partition, with and . A simple
way of choosing these thresholds consists in specifying that
the steady-state probabilities of each state be all equal, i.e:

(1)

for . The set of equations (1) must be solved
numerically (or analytically if a closed-form solution exists)
for the thresholds , . This equal prob-
ability method (EPM) was proposed in [3]. Optimization of
the thresholds using least squares quantization and the Lloyd-
Max algorithm was later suggested in [8]. However, the latter
requires much more computations, and as the number of states
increases the advantage in accuracy with respect to the EPM
diminishes. We thus rely on the EPM throughout this work.
Let be the average SNR of the received
signal, with . The average SNR corresponding to
the state is then:

(2)

In a first-order Markov model, transitions are possible only
between adjacent states. In a slow fading environment, the



variations in the received SNR during a symbol period are
slow enough that we can consider only adjacent state transi-
tions without incurring a significant penalty. Let denote
the transition probability between states and . Following
[3], these can be approximated as:

(3)

(4)

where is the theoretical level-crossing rate (LCR) evalu-
ated at , and is the average number of sym-
bols transmitted per second during which the SNR is in state

, for a symbol rate . We deduce the remaining probabil-
ities using:

The error probability for each state is calculated as:

(5)

where is the average error probability for a nonquantized
model, conditioned on the SNR. For coherent detection and
binary phase-shift keying (CBPSK), , where

. By changing the order
of integration, we can express (5) for the CBPSK case as:

(6)

where:

(7)

(8)

Below, we provide analytical expressions for the parame-
ters and , used in (3)-(4) and (6)-(7) respectively.
Once the cdf of the SNR is known, the are solved nu-
merically using (1).

B. No Diversity

The pdf and cdf of the received signal SNR for a Nakagami
fading channel and no diversity are given by:

(9)

(10)

where is the fading figure [9], is the
gamma function, and is the incom-
plete gamma function of the first kind. From [10] we obtain
the LCR’s:

(11)

is the maximum Doppler frequency for a vehicle
speed and wavelength .

Using (8) and (10), we find the following infinite series ex-
pression for :

(12)

C. Selection Combining (SC) Diversity

In the rest of the paper we consider only the case of in-
dependent diversity channels and identical fading parameters
for every channel. The pdf and cdf of the output SNR of a

-branch diversity combiner are:

(13)

(14)

The LCR’s are obtained as [11]:

(15)

For integer, using eq. 8.352.1 of [12] and the binomial
and multinomial expansions, the cdf can be evaluated as:

(16)

where are the coefficients of the multinomial expansion.
Using (16) in (8) we obtain:



(17)

Recall that this expression is valid only for integer. For
arbitrary, there is no simple closed-form solution obtainable
for , and the ’s must be calculated numerically via direct
integration.

D. Maximal Ratio Combining (MRC) Diversity

With the previous assumption of identical fading parame-
ters, the pdf and cdf of the output SNR are [9]:

(18)

(19)

with and . The desired quantities can be
deduced from eqns. (9)-(12) by substituting with and

with .

E. Equal Gain Combining (EGC) Diversity

We consider only the case of dual-branch diversity ( ),
for which we found [11] the following closed-form and infi-
nite series representations for the pdf and cdf, respectively:

(20)

(21)

is the beta function and the confluent hy-
pergeometric function, given by eqns. 8.380.1 and 9.210.1 of
[12], respectively.

We obtained the LCR’s as [11]:

(22)

Substituting (21) in (8) results in:

The previous doubly infinite series can become unstable
when calculated using limited precision software, thus one
might use direct numerical integration to evaluate .

III. NUMERICAL RESULTS

A. Bit Error Rate (BER)

For each diversity type, we compare the BER’s obtained
via our simulator to the theoretical values for different values
of the parameter. We use branches for our results,
however any number of branches can be accomodated (except
for the EGC case). The FSMC has states. The esti-
mated BER was averaged over 100 simulation runs, each one
producing samples. Expressions for the error probabili-
ties can be found in [13]. From Figures (1) to (3), we see that
the BER’s obtained match very well the analytical curves.
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Fig. 1. BER for SC: (a) , (b) , (c) .
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Fig. 2. BER for MRC: (a) , (b) , (c) .
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Fig. 3. BER for EGC: (a) , (b) .

B. Level Crossing Rates

In Figures (4)-(6), we compare the LCR’s of the FSMC
with the theoretical expressions. The LCR’s are normalized
by , and are plotted as a function of the normalized re-
ceived envelope (in dB). For the FSMC, the
value of the channel envelope when the model is in state
is computed as . We used 64 states in order to
get sufficient data points, and diversity branches. As
we can see from the plots, the model generates level-crossing
statistics very close to the theoretical ones, which is to be ex-
pected since the FSMC dynamics are based on the LCR’s.

0 2 4 6

10

10
0

r
n
 (dB)

N

a 

b 

c 

Fig. 4. LCR for SC: (a) , (b) , (c) .
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Fig. 5. LCR for MRC: (a) , (b) , (c) .
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Fig. 6. LCR for EGC: (a) , (b) , (c) .
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