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Abstract | A joint data and channel estima-
tion/tracking algorithm is presented for the time
varying frequency selective multi-path fading chan-
nel. An in-depth formulation of time varying fre-
quency selective channel structure is developed for
a receiver employing multiple antennae where the
formulation of the channel model enables channel
tap delays a fraction of the symbol period. More-
over the Doppler frequency shifts are embedded in
the formulation. State-space formulation developed
for the time varying channel leads to the recursive
least square (RLS) channel estimator, and a Kalman
channel state tracker. The data estimation is ac-
complished by using the Viterbi algorithm (MLSE-
VA). The MLSE-VA used here is the Per-Branch-
Processing Viterbi Algorithm [4] (PBP-VA) which en-
ables the updated channel estimates to be used in the
metric computations of the data sequence estimation
process. BER performance of the receiver will be pre-
sented for di�erent estimators.

I. Introduction

The problem of data detection in a wireless communica-
tion system where the channel state information is not fully
known by the receiver, and the channel is assumed to be
a rapidly time-varying, frequency selective Rayleigh fading
channel, has been studied recently [2, 4]. The channel esti-
mation/tracking is accomplished by using RLS and Kalman
�ltering algorithms, while the data sequence estimation is ac-
complished by the PBP MLSE-VA. In [2] problem formulation
does not include the Doppler shift in frequency which is due to
the movements of the communicating mobile units and/or the
movements of the environment. Even though [4] includes the
Doppler shifts in the formulation, receivers employing multiple
antennae and the possibility of channels taps being a fraction
of the symbol duration have not been considered in the chan-
nel model structure. In this paper we extend the formulations
developed in [2, 4] to handle the case when the time varying
channel taps are a fraction of symbol duration, an antenna
array is employed at the receiver, fractional sampling rate (of
the symbol duration) is employed at the receiver, the receiver
pre-estimates the channel state-space matrices; as opposed
to readily assuming the partial channel state information is
available. Actual Doppler frequency shifts were assumed to
be available in [4].

II. Signal Model for Time-Varying Multi-path

Channels

The base-band transmitted signal waveform depicted in
Figure 1 is represented by

s(t) =

NbX
k=1

dkp(t� kT ) (1)

where fdk 2 A � f�1; : : : ; �Mg � C1g is the transmitted
data sequence, of burst length Nb, which is a discrete M -ary
sequence taking values on the generally complex M -ary alpha-
bet A, which also constitutes the two dimensional employed
modulation constellation. p(t) is the transmitter pulse shap-
ing �lter. The channel impulse response, or the input delay-
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Fig. 1: Simpli�ed system model of time-varying frequency selective
fading channel model with NA = 2.

spread function [1], for each antenna are denoted by ci(t; �)
and given by

ci(t; �) =

�dX
l=0

ci;l(t)�(� � �l) =

�dX
l=0

ci;l(t)�(� � lTs) (2)

where we assumed channel tap spacing is equal to the sam-
pling interval, that is �l = lTs = lT=Ns, and ci;l(t) denote
the complex time-varying coe�cients of the channel impulse
response for the ith antenna (1 � i � NA). Figure II is a sim-
pli�ed sketch of the impulse response seen at the ith antenna
at some time to. The range of delays, �d is called the delay

spread. In the sequel the cascade of the channel impulse re-
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Fig. 2: Sketch of an impulse response seen at some time to

sponse, ci(t; �), with the transmitter pulse shaping �lter, p(t),
will be denoted by hi(t; �), and it is de�ned as

hi(t; �) =

1Z
�1

ci(t; �)p(� � �) d� =

LX
l=0

ci;l(t)p(� � lTs): (3)

The second equality is obtained from substituting the de�ni-
tion of ci(t; �) from Equation (2). Let ri(t) be the received



signal without the additive noise term at the ith antenna. We
also assumed that the impulse response of p(�) is truncated to
a �nite length Lp such that the total length of the correlated
samples is L = �d + Lp. ri(t) can be written by

ri(t) =

 
NbX
k=1

dk�(t� kT )

!
� hi(t; �)

=

NbX
k=1

dkhi(t; t� kT ): (4)

For all practical purposes it can be assumed that the trans-
mitted signal s(t) is band-limited. Although ri(t) is expanded
by the Doppler spread, which is usually much smaller than
the bandwidth of s(t), ri(t) can be assumed to be a band-
limited signal of bandwidth B Hertz. The output of the ILPF
is sampled at the Nyquist rate (Ts = 1

2B ). After the low-pass
�ltering the signal yi(t) is given by

yi(t) = ri(t) + �i(t) (5)

where �i(t) is the low-pass �ltered additive noise ~�i(t) with
a power spectral density S~� (f) = ~N0. In the sequel discrete
time signals will be denoted by square brackets, and the cor-
responding discrete time index will denote the Ts = T=Ns-
spaced epoch index, where T is the symbol duration and
Ns � 1. After ideal low-pass �ltering, yi[n] � yi(nT=Ns)
is the Ns times over-sampled version of yi(t), and using (4)
and (5), yi[n] can be expressed by

yi[n] � yi(nTs) =

NbX
k=1

dkhi(nTs; nTs � kT ) + �i(nTs)

=

NbX
k=1

dkhi[n;n� kNs] + �i[n]; (6)

where f�i[n] � (�ci [n] + j�si [n]) 2 C1; n � 1g represents zero-
mean independent Gaussian stationary complex white noise
with variance N0 = 2B ~N0 per component [5], and f�i[n]gNA

i=1

is independent from the data sequence fdkg, and f�ci [n]g and
f�si [n]g are mutually uncorrelated. De�ning

ak =
X
n

dn�(k � nNs) =

�
bk; if k

Ns
2 Z

0; otherwise,
(7)

and de�ning the summation index as m = kNs, we can
rewrite (6) as

yi[n] =

NsNbX
m=1

amhi[n;n�m] + �i[n]; (8)

from Equation (3) hi[n;n�m] is given by

hi[n;n �m] =

LX
l=0

ci;l[n]p[(n�m)� l]: (9)

Letting k = n � m, the cascade of the channel impulse re-
sponse, ci(t; �), with the transmitter pulse shaping �lter, p(t),
can be written in discrete-time as

hi[n; k] =

LX
l=0

ci;l[n]p[k � l]: (10)

III. Derivation of the Fading Filter

A straightforward method to simulate a faded signal is to
amplitude modulate the carrier signal with a low-pass �ltered
Gaussian noise source as shown in Figure III. If the Gaus-
sian noise sources have zero-mean then this method produces
a Rayleigh faded envelope [7]. In order to obtain time vary-
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Fig. 3: Faded signal generator that uses low-pass �ltered white
complex Gaussian noise

ing frequency selective fading channel we must have a bank of
these fading �lters where each �lter generates the correspond-
ing fading channel tap. If we consider a receiver employing an
antenna array, then we need to consider di�erent channels for
each antenna. An illustration of the antenna array case with
NA = 2 is provided in Figure 4, where only two ray chan-
nel per antenna (one direct path, and one delayed) has been
considered for the sake of simplicity.
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Fig. 4: Time-varying frequency selective fading channel model with
NA = 2 antennae, and with one direct and one delayed path for
each antenna.

It is well known that a Rayleigh fading process is charac-
terized by its power spectrum density, and its auto-correlation
function. Theoretical spectral density of the complex envelope
of the faded un-modulated carrier waveform is represented
as [3]

S(f) =

(
�2

2�fd
p
1�(f=fd)2

jf j < fd

0 else
(11)

where �2 is the rms value of the envelope of the waveform, or
equivalently it is the fractional power of each lag. fd is the
maximum Doppler shift which is de�ned as the ratio of the ve-
hicle speed, V , to the wavelength, �, fd = V=� ; and � = c=fc
where c = 3� 108m=sec is the speed of the light, and fc(Hz)
is the carrier frequency. The corresponding auto-correlation
function of the fading process is given by [3]

�(�) = �2J0(2�fd�) (12)

where J0(�) is the zero order Bessel function of the �rst kind.
A fading �lter with impulse response g(k) can be designed so



Tab. 1: Ratio of wx=wd tabulated with respect to various �lter
orders, and desired peak (dB) at w = wx

Filter Order Desired peak (dB) at w = wx


 10 15 20

2 1.0200 1.0055 1.0025
3 1.0152 1.0060 1.0017
4 1.0668 1.0401 1.0247
5 1.0668 1.0413 1.0228

that its output spectral density is an approximation to S(f).
We will use �lter structures which are similar to those that
were proposed in [4], but we will use a somewhat di�erent op-
timization/design criterion to set their parameters. Consider

G1(s) =
wx

s+ wx
; and G2(s) =

w2
x

s2 + wxs
Q +w2

x
:

Then we can have fading �lter continuous time transfer func-
tions with higher orders (of order 
), G
(s), that are given
by

G
(s) =

�
G

=2
2 (s); if 
 even

G1(s)G
(
�1)=2
2 (s); if 
 odd

Select Q such that there is a pre-speci�ed frequency response
level at w = wxrad/sec; for example for the third-order �lter
if Q =

p
10 then the magnitude of G(�) will have a gain of

7dB at w = wx (10dB gain from the second order �lter and
-3dB from the �rst order part making an overall gain of 7dB).

In order to �nd the parameters of the fading �lter transfer
function, G
(s), we will �rst set the �lter order 
 and Q.
Then de�ning S(f ; �), as an approximation to the theoretical
spectral density of (11), by

S(f ; �) =

(
�2

2�fd
p
1�(f=fd)

2
jf j � fd � �

0 else
(13)

where � 2 R+ is a very small positive real number, which
can be taken as the smallest positive number the comput-
ing platform that can handle. Then we solved the numer-
ical optimization problem, for �xed 
, fd and Q, wx =
argmin kS(f ; �) � jG
(j2�f)j2k; the result of this numerical
optimization gives the minimizer of the norm of the distance
between the modi�ed theoretical spectral density and the fad-
ing �lter spectrum. As an example we selected the parameters
fc = 1GHz, v = 90km/h= 25m/sec, causing the maximum
Doppler frequency shift fd = 83 13Hz. The table shows the
ratio of wx to wd, for various values of Q and �lter order 
.

Once the appropriate transfer function, G
(s), is obtained
in the s-domain, we can use the bilinear transform to get G(z)
with an ARMA(
; 
) model, or impulse invariance method to
get a G(z) with an AR(
) model (all pole �lter) [6] . Assume
that, we have an ARMA(
; 
) model with transfer function

G
(z) =

P


k=0
gMk z�k

1�P


k=1
gAk z

�k
: (14)

For a second order �lter the corresponding output spectral
density, SG2(w) = jG2(jw)j2, and the auto-correlation func-
tion are provided in comparison with the theoretical spectral
density and auto-correlation sequence in Figure 5.

On the other hand, from Figure 4 we can see that the fading
channel coe�cients ci;l[n], 1 � i � NA, 0 � l � L, can
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Fig. 5: Theoretical and approximate spectral density (for the
second order �lter G2(s)), and theoretical and approximate auto-
correlation sequence for the channel tap coe�cients.

be obtained as the outputs of the fading �lter, and can be
written as

ci;l[n] = g
 [n] � zi;l[n] (15)

where g
 [n] is the impulse response of the fading �lter, and
zi;l[n] denote the complex white Gaussian noise sequence.
Then substituting (15) into (10), hi[n; k] is given by

hi[n; k] =

LX
l=0

(zi;l[n]p[k � l]) � g
 [n]: (16)

De�ning

~wi[n; k] =

LX
l=0

zi;l[n]p[k � l]; (17)

we obtain

hi[n; k] = ~wi[n; k] � g
 [n]: (18)

Given the transfer function of the fading �lter, G
(z), as
in (14), and using (18) the ARMA(
; 
) representation of the
discrete-time channel impulse response can be obtained as

hi[n;k] =


X
k=1

gAk hi[n�m;k] +


X
m=0

gMk ~wi[n�m;k]: (19)

IV. The State-Space Model

The wireless communication system illustrated in Figure 1,
leads to the state-space formulation which is compactly writ-
ten as

state equation: x[k + 1] = Ax[k] +BW[k+ 1]
observation equation: y[k] = Ckx[k] + �[k]

(20)

(21)

where x[k] is the channel state variable and de�ned by

x[k] � [H[k]T ;H[k � 1]T ; � � � ;H[k� 
 + 1]T ]T ; (22)

H[k] =


X
n=1

gAn I(L+1)NA
H[k� n] +


X
n=0

gMn I
(L+1)NA

w[k � n] (23)

where H[k] = [h1[k]
T ;h2[k]

T ; � � � ;hNA
[k]T ]T ,and hi[k] =

[hi[k;0]; hi[k;1]; � � � ; hi[k;L]]T . Recognizing the formulation



of the channel state vector H[k] in (23), the state space equa-
tion matrices A and B in Equation 20 can be written by

A =

2
66664

gA1 I gA2 I � � � � � � gA
 I
I 0 � � � � � � 0
0 I 0 � � � 0
... 0

. . . 0 0
0 � � � 0 I 0

3
77775
(L+1)NA
�(L+1)NA


;

B =

2
66664

gM0 I gM1 I � � � gM
 I
0 0 � � � 0
0 0 � � � 0
...

... � � �
...

0 0 � � � 0

3
77775
(L+1)NA
�(L+1)NA(
+1)

:

W[k] = [w[k]T ;w[k � 1]T ; � � � ;w[k � 
]T ]T , and w[k] is a
(L + 1)NA dimensional zero mean Gaussian process, de�ned
by w[k] = [~w1[k]

T ; ~w2[k]
T ; � � � ; ~wNA

[k]T ]T where ~wi[k] =
[ ~wi[k; 0]; ~wi[k; 1]; � � � ; ~wi[k;L]]

T . The covariance matrix of
W[k], which is de�ned by

1

2
EfW[k]WH[l]g = Q�kl; (24)

will be composed of NA(
 + 1) block diagonal matrices
~Q(i), and the elements of the matrix ~Q(i)k;m = ~qikm =
1
2Ef ~wi[n; k] ~w

�

i [n;m]g can be obtained from (17) such that

~qikm =

8><
>:

LP
l=0

�2zi;lp(k � l)p(m� l); if 0 � k � l � Lp

and 0 � m� l � Lp
0 otherwise

(25)

where �2zi;l denote the variance of the noise sequences zi;l(k)
of Figure 4. Letting

Ci;k = [0(i�1)(L+1) ; ak; � � �; ak�L;0(NA�i)(L+1) ;0NA(
�1)(L+1) ]

where 0D is zero row vector of length D, then the observation
vector y[k] of (21) is de�ned as y[k] = [y1[k]; � � � ; yNA

[k]]T ,
and Ck = [CT

1;k ;C
T
2;k; � � � ;CT

NA;k
]T where Ck is of dimen-

sion NA � 
(L + 1)NA, and �[k] = [�1[k]; � � � ; �NA
[k]]T is the

zero mean white Gaussian noise vector, with covariance ma-
trix R = �2�INA

.
For the system of (20,21) the Kalman Filter algorithm and

the RLS algorithm directly follows and can be found in [2],
[4]; however we must mention brie
y that during the reception
of the training sequence, the state space matrices are �rst
estimated and used during the channel-state tracking phase.
The estimations are justi�ed as follows: Consider the state
equation (20). Multiplying both sides by xH [k] and taking
expectation we get

2Rx[1] = 2ARx[0] +BEfW[k+ 1]xH [k]g:

Since W[k+ 1] is a uncorrelated with x[k] we get

A = Rx[1]R
�1
x [0]:

Similarly multiplying both sides of state equation by xH [k+1]
and taking expectation we get

2Rx[0] = 2ARx[1] +BEfW[k+ 1]xH [k + 1]g:

Substituting (20), and using (24) we conclude

BQBH = Rx[0]�ARx[1]:

However the estimators of the autocorrelations will be used in
the actual implementations of the algorithm.

V. Simulations of the Algorithm

After making the aforementioned extensions, the perfor-
mance of RLS and Kalman channel state estimators coupled
with PBP-MLSE [4] is demonstrated for QPSK symbols, with
raised cosine pulse (truncated to a single symbol interval) be-
ing transmitted over the wireless channel with 3 taps (half-
symbol spaced) with fractional powers 0.5, 0.3 and 0.2, with
Na = 2. Sampling rate of twice the symbol rate is assumed.
A maximum Doppler shift of 83.33 Hz is observed under the
conditions as in Section III. The system performance was eval-
uated with respect to average bit-energy-to-noise ratio 
bave
de�ned by


bave =
1

NA log2M

NAX
i=1

Efjdkj2g
PL

k=0
Efjhi[�; k]j2g

2N0

MLSE-PBP algorithm with perfectly known channel states
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Fig. 6: Bit error probability performance of the algorithm.

(at every sampling/time instant) has been provided as an
optimal bound which is not practically possible. Then two
di�erent cases of Kalman channel state tracker has been pro-
vided as well: with and without known channel state matrices
(A;BQBH;R). For the unknown case those matrices were
estimated during the training sequence phase.
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