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          Abstract – The D
~

-description of a rate R=k/n convolu-
tional encoder as a linear sequential circuit with k inputs and
one output is proposed. We discuss the classical definition of
equivalent codes (type 1 equivalence)  and propose the defini-
tion of encoders that generate different codes but with the
same code spectrum (type 2 equivalence). We conclude with
some examples of encoder implementations  that do not give
the same code but the same code spectrum at lower encoder
complexity (less memory elements).

      Index terms – Convolutional codes, algebraic structure of
convolutional codes, equivalent encoder, minimal encoder,
decoding complexity

I. Introduction
     Structural properties of convolutional codes and their
generator matrices have been investigated in a series of
papers and books [1-6]. One of the main problems consid-
ered is that of finding convolutional encoders that provide
minimal complexity of trellis decoding for the same code
properties. The “classical” D-polynomial generator matrix
of a  R = k/n  convolutional code is given by
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where )D(Gi
j are D-generator polynomials, that relate the

information sequences Ij(D) and code sequences Ti(D),

where k,1j =  and n,1i = , as
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   Definition 1. A convolutional code generated by a R =
k/n convolutional encoder with generator matrix G(D) over
F2(D) is the set of output sequences Ti(D).

The “base”-encoder can be realized with k shiftregisters
and n modulo-2 adders. Note, that the output as given in
(2) consists of n parallel output sequences.  Before trans-
mission, one may use a parallel to serial converter to have
a serial transmission of the encoder output. In this contri-
bution we investigate the properties of a R=k/n convolu-
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tional encoder as a linear sequential circuit with k inputs
and one output. Note that we have to realize, that the tim-
ing of input symbols and output symbols must be consis-
tent.  To achieve a consistent desciption of the input/output
relation we define the following sequences:
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The k-input/1-output relation can now be formalized as
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     Definition 2. A convolutional code generated by a R =

k/n  convolutional encoder with generator matrix )D
~

(G  is

the set of output sequences ∑ ⋅=
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The obvious realization of the encoding procedure is given
in Figure 1. The adjoint obvious realization has only one
shift register and one output, see also [2,6].
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Fig. 1. The k-input, 1-output encoding circuit



For mathematicians, the D description is not different from

the D
~

-description. However, the D
~

-presentation is useful
if one tries to realize the encoding circuit. This can be seen
in the timing diagram of Fig. 2 for n = 3.
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    Fig. 2. Input symbols in the D
~

- description.

The duration of a code symbol Ts = Tinf  / n.

Example 1. Consider a one-input/one-output R = 1/2 en-
coder with D-generator matrix of the base encoder

   )D1,DD1())D(G),D(G()D(G 2221 +++==   .

 According to the above definition
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A particular implementation of the encoder is given in Fig.
3.
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Fig.3. Encoder for the example 1 code.

Example 2. Consider a R = 2/4 two-input/one-output en-
coder with a D-generator matrix of the base encoder
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 Hence the D
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- generator matrix of this encoder is
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One can see that the matrix (3) gives rise to a delay of 2
time instants in its output sequence.  We may take out the

delay and have a simpler implementation of the D
~

-
encoder. The question is what kind of effect this then has
on the description of a matrix in the D-notation. This is
topic of the next chapter, where we consider the equiva-
lence between encoder matrices. The goal is to obtain an
encoder that leads to minimum decoding complexity, i.e.
the encoder with the minimum number of memory ele-
ments in its base realization.

II.  Code and Code spectrum equivalence
The goal of our investigation is to find the D-generator
matrices of convolutional  encoders  with the smallest
number of memory elements.

     Definition 3. Two convolutional encoders are called D-
equivalent if they encode the same code (type 1), [2].

For D-equivalent encoders, the encoding matrices

   G’(D) = A(D)G(D); A-1(D) A(D) = DsIk ; s ≥ 0,

where A(D) and A-1(D) are matrices over F2(D). Obvi-
ously, G(D) and G’(D) generate the same set of output
sequences.

     Definition 4. If the generator matrix G(D) isn’t D-
delay-free, it can be written as G(D)=DiGd(D), where

1≥i  and the generator matrix Gd(D) is D-delay-free, [4].

Remark. We change the terms an “equivalent” encoder
and a “delay-free” matrix used in [1-6] by a “D-
equivalent” encoder and a D-delay-free matrix only for

showing the difference with the introduced  D
~

-equivalent

encoder and D
~

-delay-free matrix.

     Definition 5.  Convolutional encoders with generator

polynomial matrices )D
~

(G1  and )D
~

(G2  are called D
~

-

equivalent if they encode the same code.



     Theorem 1.  Two rate R= k/n  convolutional generator

matrices G( D
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      Definition 6. A base convolutional encoder with gen-
erator matrix )D(G ′ is said to be minimal if it has a reali-

zation of the D-generator matrix with the smallest number

of memory elements among all possible D
~

-equivalent en-
coders of the same code.
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Example 3. In accordance with definition 3, two encoders
with the D-generator matrices
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are not equivalent. The D
~

-generator polynomials of these
codes are
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It is obvious, that the information sequences
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) encode the same code, because
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accordance to our definition 5, as the matrix )D
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In Fig. 4 we illustrate the difference between the delay in

the D- and the D
~

-description. For the D-decription the
delay is defined over code blocks of length n, whereas for

the D
~

-decription the delay is defined over output digits.
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Fig. 4 Delay in the D
~

-description

To see the relation between the D
~

- and the D-description
we further define the nxn matrix
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If we look at the product G(D)S1, we obtain an encoder
matrix that generates code sequences that cannot be gener-
ated by a D-equivalent matrix, but the generated code has
exactly the same code spectrum as the starting matrix
G(D). The product
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which is equivalent to a shift of the output sequence over
one position. The same is true for the product G(D)[S1]

s
.

Hence, if we multiply G(D) s times with S1, we shift the
output sequence over s positions. This is in agreement with
theorem 1 and definition 7. Other operations on the output
that cannot be achieved with definition 3 of code equiva-
lence is that of  column permutation and column delay.
For n = 3 examples of the operations are given below:
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We therefore introduce the following natural definition.

   Definition 8. Two convolutional encoders are called
spectrum equivalent if their generated codes have the same
spectrum (type 2).

Example 4.  The code
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are spectrum equivalent, since
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Note that G(D) is basic and minimal according to the clas-
sical definition. The encoder realization takes 3 memory
elements. However, by row and column operations that do
not change the code spectrum we obtain G’(D) which is
memoryless.  Note that
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The D
~

-delay-free D
~

-generator matrix in round brackets is

the matrix of the encoder, which is D
~

-equivalent to the
encoder with the matrix (6). The D-generator matrix of the

D
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-equivalent base encoder is
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For G’(D), the D
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-equivalent is given by
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Example 5. Consider a two input and one output R = 2/4
encoder with the D-generator matrix of base encoder
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 The decoding complexity of such an encoder is  two times
smaller than that of the minimal encoder with matrix (8).

Example 6. Consider a R = 2/4 two inputs and one output
encoder with the D-generator matrix of base encoder
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 The encoder G’(D) has the same code spectrum since
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The trellis complexity connected with an encoder G’(D) is
two times smaller than that connected with the minimal
encoder with matrix G(D).

III. Conclusion

On the basis of the proposed D
~

-description of a rate
R=k/n convolutional encoder as a linear sequential circuit

with k inputs and one output the D
~

-equivalent convolu-
tional encoders with k inputs and one output are consid-
ered. The introduced description leads to less complex
encoders. Furthermore, we introduce spectrum equivalent
encoders. Both concepts  cannot be defined in the frame-
work of classical algebraic theory of convolutional codes.
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