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I%\bstract — The D -description of a rate R=k/n convolu-
tional encoder as a linear sequential circuit with k inputs and
one output is proposed. We discuss the classical definition of
equivalent codes (type 1 equivalence) and propose the defini-
tion of encoders that generate different codes but with the
same code spectrum (type 2 equivalence). We conclude with
some examples of encoder implementations that do not give
the same code but the same code spectrum at lower encoder
complexity (less memory elements).

Index terms — Convolutional codes, algebraic structure of
convolutional codes, equivalent encoder, minimal encoder,
decoding complexity

I. Introduction

Structural properties of convolutional codes and their
generator matrices have been investigated in a series of
papers and books [1-6]. One of the main problems consid-
ered is that of finding convolutional encoders that provide
minimal complexity of trellis decoding for the same code
properties. The “classical” D-polynomial generator matrix
of a R=k/n convolutional codeis given by

HG%(D) Gg(D) Gl (D)
G(D)zécz(D) G2(D) Gz(D)é &
HGL (D) Gi (D) Gp(D)H

where Gij (D) are D-generator polynomials, that relate the

information sequences I'(D) and code sequences T;(D),

where j=1,k and i=1,n, as

k . .
Ti(D) = _le '(D)(G;(D). )
J:

Definition 1. A convolutional code generated by a R =
k/n convolutional encoder with generator matrix G(D) over
F,(D) isthe set of output sequences T;(D).

The “base”-encoder can be realized with k shiftregisters
and n modulo-2 adders. Note, that the output as given in
(2) consists of n parallel output sequences. Before trans-
mission, one may use a parallel to seria converter to have
a serial transmission of the encoder output. In this contri-
bution we investigate the properties of a R=k/n convolu-
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tional encoder as a linear sequential circuit with k inputs
and one output. Note that we have to redlize, that the tim-
ing of input symbols and output symbols must be consis-
tent. To achieve a consistent desciption of the input/output
relation we define the following sequences:

R(D)=1+D +Im#D"* ;
(D" =i} +ilD" +i,D2" +mm
G(D")= G}(D")+DG?(D") +mD" G (D") ;

(D)=R(D)!(D"; G(D)=G(D")/R(D).

The k-input/1-output relation can now be formalized as
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Definition 2. A convolutional code generated by aR =
k/n convolutional encoder with generator matrix G(D) is

~ ko~ -
the set of output sequences T(D) =  I'(D) [G;(D) .
=

The obvious realization of the encoding procedure is given
in Figure 1. The adjoint obvious realization has only one
shift register and one output, see also [2,6].
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Fig. 1. The k-input, 1-output encoding circuit



For mathematicians, the D description is not different from
the D -description. However, the D -presentation is useful
if one tries to realize the encoding circuit. This can be seen
in the timing diagram of Fig. 2 for n= 3.
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Fig. 2. Input symbolsin the D - descri ption.
The duration of acode symbol Ts= T / n.

Example 1. Consider a one-input/one-output R = 1/2 en-
coder with D-generator matrix of the base encoder

G(D)=( GYD),G?(D) )=( 1+D+D?, 1+D? ).
According to the above definition

G(D)=(1+ D + D2+ D*+ D%)/(1+D),
T(D)=1(D)G(D).

A particular implementation of the encoder is given in Fig.

T(D)

Fig.3. Encoder for the example 1 code.

Example 2. Consider a R = 2/4 two-input/one-output en-
coder with a D-generator matrix of the base encoder

_D? 07 1 of
) Ho D o0 1H

From this we obtain

~) =5 =g =

+D°%+ ~ +
D?+D°+D° . )= D’+D
1+D+D?+D°

G 5 = —-_——= =5 -
1(P) 1+D+D2+D°

Hencethe D - generator matrix of this encoder is

2+58+59

G(E):f ~ ~
1+D+D2+D3H D3+D°

. @)
H

One can see that the matrix (3) gives rise to a delay of 2
time instants in its output sequence. We may take out the
delay and have a simpler implementation of the D -
encoder. The question is what kind of effect this then has
on the description of a matrix in the D-notation. This is
topic of the next chapter, where we consider the equiva-
lence between encoder matrices. The goal is to obtain an
encoder that leads to minimum decoding complexity, i.e.
the encoder with the minimum number of memory ele-
mentsin its base realization.

II. Code and Code spectrum equivalence
The goa of our investigation is to find the D-generator
matrices of convolutional encoders with the smallest
number of memory el ements.

Definition 3. Two convolutional encoders are called D-
equivalent if they encode the same code (type 1), [2].

For D-equivalent encoders, the encoding matrices
G'(D) = A(D)G(D); AY(D) A(D) = D%l s=0,

where A(D) and A™}(D) are matrices over F»(D). Obvi-
ously, G(D) and G’ (D) generate the same set of output
sequences.

Definition 4. If the generator matrix G(D) isn't D-
delay-free, it can be written as G(D)=D'Gy4(D), where
I =1 and the generator matrix G¢(D) is D-delay-free, [4].

Remark. We change the terms an “equivalent” encoder
and a “delay-free” matrix used in [1-6] by a “D-
equivalent” encoder and a D-delay-free matrix only for
showing the difference with the introduced D -equivalent

encoder and D -del ay-free matrix.

Definition 5. Convolutional encoders with generator
polynomial matrices Gl(ﬁ) and Gz(f)) are called D -
equivalent if they encode the same code.



Theorem 1. Two rate R= k/n convolutional generator
matrices G(D ) and G'(D) are D -equivalent if and only

if there is kxk non-singular matrix A(5") over Fz(f))
such that

G(D) =DSTA(D")[G'(D); s=0.

Definition 6. A base convolutional encoder with gen-
erator matrix G'(D)is said to be minima if it has a reali-

zation of the D-generator matrix with the smallest number

of memory elements among all possi bleD -equivalent en-
coders of the same code.

Definition 7. If thel5—generator matrix G(f)) is not
D -delay-free, it can be written as G(D)=D'G4(D),
where i >1 and the IS-generator matrix Gd(f)) is D-
delay-free.

Example 3. In accordance with definition 3, two encoders
with the D-generator matrices

G1(D)=( 1 1+D ), Gy(D)=( D+D?% 1) 4

are not equivalent. TheD -generator polynomials of these
codes are

GO)= 5 (1+D+D3> &0 5 (1+D+D3) (5)
It is obvious, that the information sequences
14(D)=DIyD) encode the same code, because

TAD)=DTYD), i.e. the codes (4) areD -equivalent in
accordance to our definition 5, as the matrix G, (D) is not
D- del ay-free.

In Fig. 4 we illustrate the difference between the delay in

the D- and the 5-description. For the D-decription the
delay is defined over code blocks of length n, whereas for

the D -decri ption the delay is defined over output digits.
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Fig. 4 Delay in the D -description

To see the relation between the D - and the D-description
we further define the nxn matrix

M 10 00 m 01 0O
D o1 o5 B oo oo
S$= 00 MIOLS,=0 0 0 mm o
oo 15 oo 17
oo oH H Do oH

If we look at the product G(D)S,, we obtain an encoder
matrix that generates code sequences that cannot be gener-
ated by a D-equivalent matrix, but the generated code has
exactly the same code spectrum as the starting matrix
G(D). The product

HpGT (D) G%(D) G%(D) Gi“i(D)H
L
GOD)S, = Ebez(m G5(D) G3(D) 63 (o)d
O
E:G (D) Gl(m Gl(m G (D)

which is equivalent to a shift of the output sequence over
one position. The same is true for the product G(D)[S,]®
Hence, if we multiply G(D) s times with S;, we shift the
output sequence over s positions. Thisisin agreement with
theorem 1 and definition 7. Other operations on the output
that cannot be achieved with definition 3 of code equiva-
lence is that of column permutation and column delay.
For n = 3 examples of the operations are given below:

010 0 01
SS= 0 0 1; S, = D 0 O;
D 0O 0 DO
1 0 O 0 01
delay O D' o; peemute 0 1 O
0 0 1 100

We therefore introduce the following natural definition.
Definition 8. Two convolutional encoders are caled

spectrum equivalent if their generated codes have the same

spectrum (type 2).

Example 4. The code

2 2
G'(D):% i Cl) 1% and G(D) = EPO D% 1 o

D 0 1H

are spectrum equivalent, since



OOOE
D° 1 0 1 0
D 0 1 OD20D
00D§
110
=D? .
%101%

Note that G(D) is basic and minimal according to the clas-
sical definition. The encoder realization takes 3 memory
elements. However, by row and column operations that do
not change the code spectrum we obtain G'(D) which is
memoryless. Note that

6 7
. Ll T
H+D+D?+D°H D+D°

The D -del ay-freef) -generator matrix in round brackets is

the matrix of the encoder, which is I5-equiva|ent to the
encoder with the matrix (6). The D-generator matrix of the

D -equivalent base encoder is

G(D)% °P DE. @

1 01
For G'(D), the D -equivalent is given by

H H1+D +D?H
H+D +D3H D+b* Y

Example 5. Consider a two input and one output R = 2/4
encoder with the D-generator matrix of base encoder

G(D)=%312 tl 0% )

D 01
For this matrix

D Sponff 35 S 22

Hence we have the D -del ay-free, D -equivalent matrix

G(D) =D?

G(D) =

1 H D+D2+D3*{

57 +5° ]1+D2+D° [

G(D) = ——
1+D+D

The decoding complexity of such an encoder is two times
smaller than that of the minimal encoder with matrix (8).

Example 6. Consider a R = 2/4 two inputs and one output
encoder with the D-generator matrix of base encoder

ob D 0 10

01 1 0 10
DG(D)

G(D) = .
(®) H+D 1 1 of

The encoder G’ (D) has the same code spectrum since
o
OD D D D 0 10O
O
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The trellis complexity connected with an encoder G’ (D) is
two times smaller than that connected with the minimal
encoder with matrix G(D).
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I11. Conclusion

On the basis of the proposed B—d&cription of a rate
R=k/n convolutional encoder as a linear sequential circuit

with k inputs and one output theD -equivalent convolu-
tional encoders with k inputs and one output are consid-
ered. The introduced description leads to less complex
encoders. Furthermore, we introduce spectrum eguivalent
encoders. Both concepts cannot be defined in the frame-
work of classical algebraic theory of convolutional codes.
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